Perbandingan Kemampuan Migrasi Adipose-Derive Stem Cells Asal Manusia pada Berbagai Medium Pertumbuhan

Imam Rosadi, Karina Karina, Iis Rosliana, Tias Widyastuti, Komang A Wahyuningsih, Siti Sobariah, Irsyah Afini

DOI: https://doi.org/10.23917/bioeksperimen.v6i1.10432

Abstract

Cell migration is natural process that plays an important role in development of organisms. Stem cells are an important in the cells migration process due to repairing tissues or organs. Stem cells ability studies towards cell migration process have been developed and studied. In this study, adipose-derived stem cells (ADSCs) were used as cell models of stem cell migration which cultured on medium containing 10% fetal bovine serum (FBS), a combination of 1 0% FBS and L-ascorbic acid (LAA), 10% human platelet-rich plasma (PRP) and 0.1% FBS as a control. The technique that used to analyse cell migration process is scratch assay method. The results of this study indicate that ADSCs were able to migrate on medium containing 10% FBS, 10% FBS-LAA and PRP. On 24 h of observation, the scratched area of ADSCs were 0.70x (control), 0.13x (10% FBS), 0.04x (10% FBS-LAA), and 0.21x (10% PRP) compared to 0 h (1.00x). The width of scratches area in the control group at 24 h was significantly higher than the other treatment groups. This is suggested due to the lack of growth factor contained in the medium as a nutrition for the cells. Therefore, it can be concluded that ADSCs are able to migrate on various medium supplemented by FBS or human PRP.

Keywords

ADSCs, Migration, FBS, LAA, PRP

References

Amable, P.R., M.V. Teixeira, R.B. Carias, J.M. Granjeiro, R. Borojevic 2014. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PloS one. 9(8):e104662.

Bobadilla, A.V., J. Arévalo, E. Sarró, H. Byrne, P.K. Maini, T. Carraro, S. Balocco, A. Meseguer, T. Alarcón. 2018. Local migration quantification method for scratch assays. J. Royal Soc. Interface. 1-18.

de Lucas, B., L.M. Pérez, B.G. Gálvez. 2018. Importance and regulation of adult stem cell migration. J. cell. mol. med. 22(2):746-54.

Dominici, M.L.B.K., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F.C. Marini, D.S. Krause, R.J. Deans, A. Keating, D.J. Prockop, E.M. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytother. 8(4):315-317.

Gentile, P. 2012. Concise Review: Adipose-Derived Stromal Vascular Fraction Cells and Platelet-Rich Plasma: Basic and Clinical Implications for Tissue Engineering Therapies in Regenerative Surgery. Stem cells transl med. 1(3):230-236.

Horwitz, R., D. Webb. 2003. Cell migration. Cur. Bio. 13(19):R756-759.

Huang, B., L.F. Huang, L. Zhao, Z. Zeng, X. Wang, D. Cao, L. Yang, Z. Ye, X. Chen, B. Liu, T.C. He. 2019. Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells. Genes & Diseas. 1-10.

Kern, S., H. Eichler, J. Stoeve, H. Klüter, K. Bieback. 2006. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells. 24(5): 1294-1301.

Li, L., R. Bhatia. 2011. Stem cell quiescence. Clinic. cancer res. 17(15):4936-4941.

Meinel, L., S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan, G. Vunjak‐Novakovic. 2004. Engineering cartilage‐like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotech. Bioeng. 88(3): 379-391.

Mennan, C., K. Wright, A. Bhattacharjee, B. Balain, J. Richardson, S. Roberts. 2013. Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. BioMed res. intern. 2013: 1-8.

Montell, D.J., W.H. Yoon, M. Starz-Gaiano. 2012. Group choreography: mechanisms orchestrating the collective movement of border cells. Nat. rev. Mol. cell bio. 13(10):631-645.

Murphy, M.B., D. Blashki, R.M. Buchanan, I.K. Yazdi, M. Ferrari, P.J. Simmons, E. Tasciotti. 2012. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials. 33(21):5308-5316.

Nicoletti, G.F., F. De Francesco, F. D'Andrea, G.A. Ferraro. 2015. Methods and procedures in adipose stem cells: state of the art and perspective for translation medicine. J. cell. physiol. 230(3): 489-495.

Park, H.B., J.H. Yang, K.H. Chung. 2011. Characterization of the cytokine profile of platelet rich plasma (PRP) and PRP-induced cell proliferation and migration: Upregulation of matrix metalloproteinase-1 and-9 in HaCaT cells. Korean J. Hematol. 46(4):265-273.

Robertson, J.A. 2010. Embryo stem cell research: ten years of controversy. J Law, Med & Ethics. 38(2):191-203.

Stessuk, T., M.B. Puzzi, E.A. Chaim, P.C.M. Alves, E.V. de Paula, A. Forte, J.M. Izumizawa, C.C. Oliveira, F. Frei, J.T. Ribeiro-Paes. 2016. Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro. Archiv. Dermatol. Res. 308(7):511-520.

Wang, Y., E. Bella, C.S. Lee, C. Migliaresi, L. Pelcastre, Z. Schwartz, B.D. Boyan, A. Motta. 2010. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials. 31(17):4672-4681.

Yue, P.Y., E.P. Leung, N.K. Mak, R.N. Wong. 2010. A simplified method for quantifying cell migration/wound healing in 96-well plates. J. biomol. screening. 15(4):427-433.

Zhao, L.R., J.H. Zhang. 2014. Cellular Therapy for Stroke and CNS Injuries. Springer.

Zhu, Y., T. Liu, K. Song, X. Fan, X. Ma, Z. Cui. 2008. Adipose‐derived stem cell: a better stem cell than BMSC. Cell biochem. funct. 26(6): 664-675.

Zuk, P.A. 2010. The Adipose-derived Stem Cell: Looking Back and Looking Ahead. Mol Bio Cell. 21:1783-1787.

Article Metrics

Abstract view(s): 109 time(s)
PDF (Bahasa Indonesia): 124 time(s)

Refbacks

  • There are currently no refbacks.