KUALITAS DAN Tipe KIMIA AIR TANAH DI DATARAN PANTAI KOTA SEMARANG.
(Quality and Chemical Types of Groundwater in Coastal Plain of Semarang City)

Oleh:
Setyawan Purnama
Fakultas Geografi, Universitas Gadjah Mada
Bulaksumur, Yogyakarta. Telp. (0274)902332. Fax: (0274)589595

ABSTRACT

There are two objectives of this research. First, to identify and analyse the condition of groundwater quality in the research area, and second, to determined the chemical types of groundwater. To achieve these objectives, 59 groundwater samples were taken stratifiedly, base on the different of electrical conductance value.

As a result, it is identified that most groundwater in the research areas is not suitable for drinking water sources, because has high concentration of electrical conductance, turbidity, hardness, chloride, manganese and salinity. This conclusion is also supported by Stiff diagram analysis. The result of Stiff's analysis shows that the chemical types of groundwater is very variative. Groundwater in coastal areas has higher supply of saline water than fresh water.

Keywords : tipe kimia, diagram Stiff, metode Stiff's analysis

PENDAHULUAN

Latar Belakang

Ditinjau dari segi hidrologi, ada tiga jenis air utama yaitu air hujan, air permukaan (sungai, danau, rawa) dan air tanah. Air tanah mempunyai peranan besar dalam kehidupan manusia sehari-hari karena merupakan sumber air minum utama. Ada beberapa keuntungan menggunakan air tanah sebagai sumber air minum, selain kualitasnya lebih baik daripada air permukaan dan air hujan, kesinambungan ketersediaannya juga relatif tidak begitu terpengaruhi oleh perbedaan musim.

Kualitas air merupakan salah satu aspek yang makin banyak diperhatikan dalam penge- lolaan sumberdaya air. Disamping karena persyaratananya harus diperhatikan, saat ini terlihat adanya kecenderungan penurunan kualitas air di beberapa daerah terutama di daerah perkotaan, tak terkecuali di Kota Semarang.

. Ditinjau dari topografinya, Kota Semarang mempunyai kondisi topografi datar hingga bergelombang. Topografi datar dengan kemiringan lereng 0 - 2% dijumpai di Kota Semarang bagian bawah yang merupakan wilayah penelitian. Wilayah ini meliputi 18,4 % dari seluruh wilayah kota yang berupa dataran pantai. Permasalahan utama yang dihadapi daerah ini adalah pada kualitas air tanahnya. Selain karena tingginya tingkat pencemaran oleh limbah penduduk
dan industri, rendahnya kualitas air juga disebabkan oleh adanya air asin.

Berdasarkan latar belakang tersebut, tujuan penelitian ini adalah sebagai berikut:
1) Mengidentifikasi dan menganalisis kondisi kualitas air tanah di daerah penelitian.
2) Menentukan tipe kimia air tanah di daerah penelitian.

Tinjauan Pustaka

Air tanah tidak dijumpai di semua tempat. Keterdapatannya air tanah tergantung dari adanya lapisan batuan yang dapat mengandung air tanah yang disebut akuifer. Akuifer adalah formasi batuan yang dapat menyimpan dan melalukan air, seperti misalnya pasir dan kerikil lepas (Seyhan, 1977; Fetter, 1988). Akuifer sering pula disebut waduk air atau formasi air.

Air tanah sebagai salah satu komponen dalam siklus hidrologi, akan mengalami perubahan komposisi kimia, baik berupa penambahan maupun pengurangan konsentrasi unsur kimia (Stauffer dan Canfield, 1992). Adapun proses-proses yang dapat mempengaruhi perubahan komposisi kimia tersebut diantaranya adalah hujan, evaporsasi dan transpirasi, pelarutan air fosil, pertukaran kation, pelarutan mineral, proses oksidasi-reduksi serta aktivitas manusia.

Kualitas air tanah tidaklah selalu sama antara satu tempat dengan tempat lain, tergantung kepada faktor-faktor yang berpengaruh terhadap kualitas air di daerah yang bersangkutan. Secara ringkas dapat dikatakan bahwa ada dua faktor utama yang berpengaruh terhadap kualitas air di suatu daerah, yaitu faktor alami dan faktor buatan. Faktor alami meliputi batuan dan tanah, vegetasi serta iklim, sedangkan faktor buatan meliputi pupuk dan limbah pertanian, insektisida, limbah domestik serta limbah industri (Sudarmadji, 1991). Disamping itu erosi yang terjadi di bagian hulu dapat pula mempengaruhi kualitas air di bagian hilirnya, terutama dalam hal kekeruhan.

METODE PENELITIAN
Cara Penelitian
Penentuan sampel air secara stratified random sampling. Stratifikasi berdasarkan perbedaan nilai DHL yaitu di bawah 1000 mmhos/cm dan di atas 1000 mmhos/cm. Dari masing-masing stratifikasi diambil 29 dan 30 sampel air tanah. Selain itu diambil pula 4 sampel air sungai yang berfungsi sebagai kontrol pengaruh sungai terhadap air tanah (Gambar 1).
Untuk mengetahui sifat fisik dan kimia air, dilakukan analisis terhadap sifat-sifat ini, yaitu kekeruhan, kesadahan, \(\text{Ca}^{2+}, \text{Mg}^{2+}, \text{Na}^+, \text{K}^+, \text{SO}_4^{2-}, \text{HCO}_3^-, \text{CO}_3^{2-}, \text{Cl}, \text{Fe}^{2+}, \text{Mn}^{2+}, \text{NO}_3^- \) dan salinitas. \(\text{D}^3\text{H}, \text{suhu dan pH} \) diukur langsung di lapangan.

Analisis Data

Analysis konentrasi kimia air tanah dengan diagram Stiff

Analisis kimia air dengan diagram Stiff digunakan untuk mengetahui sifat kimia air tanah dengan mudah dan cepat secara visual. Parameter kimia air tanah yang digunakan dalam analisis diagram Stiff adalah ion-ion dominan dalam air tanah yaitu \(\text{Ca}^{2+}, \text{Mg}^{2+}, (\text{Na}^+ + \text{K}^+), \text{HCO}_3^- \), \(\text{Cl} \) dan \(\text{SO}_4^{2-} \), yang kadarnya terlebih dahulu dinyatakan dalam satuan miligram ekivalen per liter (meq/l).

Untuk membuat diagram ini, kadar masing-masing ion tersebut digambarkan pada sumbu yang dibuat pada arah kanan dan kiri dari pusat. Kadar ion positif (kation) digambarkan pada sumbu ke arah kiri, sedangkan kadar ion negatif (anion) digambarkan pada sumbu ke arah kanan. Dengan menghubungkan ujung dari sumbu yang menunjukkan kadar ion, akan diperoleh bentuk dan ukuran diagram Stiff.

Penggambaran diagram ini dilakukan untuk setiap sampel air tanah. Selanjutnya diagram tersebut dialurkan dalam peta sesuai dengan titik pengambilannya, sehingga akan

Gambar 1. Peta Lokasi Pengambilan Sampel Air Tanah dan Air Sungai

diperoleh peta sifat kimia air tanah yang dirceminkan dengan bentuk dan ukuran diagram Stiff pada tiap sampel air. Bila bentuk dan ukuran diagram relatif tidak berubah di seluruh daerah penelitian, berarti tidak terjadi perbedaan sifat kimia air tanah dari satu tempat ke tempat lainnya. Bila bentuk diagram berubah tetapi ukurannya tetap berarti terjadi perbedaan tipe kimis air dari satu tempat ke tempat lainnya. Bila bentuk diagram tetap tetapi ukurannya berubah, berarti melempap tipe kimia airnya sama tetapi terdapat perbedaan kadar ion dalam air tanah. Selanjutnya bila bentuk dan ukuran diagram berbeda, berarti terjadi perbedaan tipe kimis dan kadar ion dominan dalam air tanah tersebut (Appelo dan Postma 1993).

Tabel 1. Pembagian Tipe Kimia Air pada Tipe Utama

<table>
<thead>
<tr>
<th>No</th>
<th>Tipe utama</th>
<th>Kode</th>
<th>Cl (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air tawar</td>
<td>F</td>
<td><150</td>
</tr>
<tr>
<td>2</td>
<td>Air tawar-payau</td>
<td>Fb</td>
<td>150-300</td>
</tr>
<tr>
<td>3</td>
<td>Air payau</td>
<td>B</td>
<td>300-10³</td>
</tr>
<tr>
<td>4</td>
<td>Air payau-asin</td>
<td>Bs</td>
<td>10³-10⁴</td>
</tr>
<tr>
<td>5</td>
<td>Air asin</td>
<td>S</td>
<td>10⁴-10⁴</td>
</tr>
<tr>
<td>6</td>
<td>Air asin kadar tinggi</td>
<td>H</td>
<td>>2.10⁴</td>
</tr>
</tbody>
</table>

Tabel 2. Pembagian Tipe Menurut Kesadahan yang Disebabkan Ion Ca²⁺ dan Mg²⁺

<table>
<thead>
<tr>
<th>No</th>
<th>Tipe</th>
<th>Kode Tipe</th>
<th>Kesadahan Ca²⁺ dan Mg²⁺ (mmol/l)</th>
<th>Kejadian umum di alam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sangat lunak</td>
<td>0</td>
<td>0,0 - 0,5</td>
<td>F</td>
</tr>
<tr>
<td>0</td>
<td>Lunak</td>
<td>1</td>
<td>0,5 - 1,0</td>
<td>F Fb B</td>
</tr>
<tr>
<td>1</td>
<td>Agak sadah</td>
<td>2</td>
<td>1 - 2</td>
<td>F Fb B Bs</td>
</tr>
<tr>
<td>2</td>
<td>Sangat sadah</td>
<td>3</td>
<td>2 - 4</td>
<td>F Fb B Bs</td>
</tr>
<tr>
<td>3</td>
<td>Amat sangat sadah</td>
<td>4</td>
<td>4 - 8</td>
<td>F Fb B Bs S</td>
</tr>
<tr>
<td>4</td>
<td>Amat sangat sadah</td>
<td>5</td>
<td>1.5 - 16</td>
<td>Bs S H</td>
</tr>
<tr>
<td>5</td>
<td>Amat sangat sadah</td>
<td>6</td>
<td>1.5 - 32</td>
<td>Bs S H</td>
</tr>
<tr>
<td>6</td>
<td>Amat sangat sadah</td>
<td>7</td>
<td>64 - 128</td>
<td>S H</td>
</tr>
<tr>
<td>7</td>
<td>Amat sangat sadah</td>
<td>8</td>
<td>128 - 256</td>
<td>S H</td>
</tr>
<tr>
<td>8</td>
<td>Amat sangat sadah</td>
<td>9</td>
<td>> 256</td>
<td>H</td>
</tr>
</tbody>
</table>

Analisis tipe kimia air tanah dengan Metode Stuyfzand

Dalam klasifikasi Stuyfzand, tipe kimia air dibagi menjadi tipe utama, tipe, sub-tipe dan kelas dari sampel air (Stuyfzand 1986). Pada Tabel 1 dan 2 ditunjukkan cara penentuan tipe utama, tipe dan klas menurut klasifikasi ini, sedangkan pada Gambar 2 ditunjukkan pembagian sub-tipe menurut kation dan anion dominan (dalam meq/l).

HASIL PENELITIAN DAN PEMBAHASAN

Kondisi Kualitas Air tanah di Daerah Penelitian

Kondisi kualitas air tanah di daerah...
<table>
<thead>
<tr>
<th>Keterangan</th>
<th>Kondisi</th>
<th>Klas</th>
<th>Kekurangan ((Na^+ + K^+ + Mg^{2+})) minimum (> \left(\frac{\sqrt{2} \times CI}{(Na^+ + K^+ + Mg^{2+})}\right)) minimum < (\left(\frac{\sqrt{2} \times CI}{(Na^+ + K^+ + Mg^{2+})}\right)) minimum</th>
<th>Kelebihan ((Na^+ + K^+ + Mg^{2+})) minimum (> \left(\frac{\sqrt{2} \times CI}{(Na^+ + K^+ + Mg^{2+})}\right)) minimum</th>
<th>Catatan ((Na^+ + K^+ + Mg^{2+})) minimum (> 1.061 CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ada tambahan air asin</td>
<td>((Na^+ + K^+ + Mg^{2+})) minimum (> \left(\frac{\sqrt{2} \times CI}{(Na^+ + K^+ + Mg^{2+})}\right)) minimum</td>
<td>Kode</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

1) Ditinjau dari nilai DHLnya, dari pengamatan di lapangan menunjukkan bahwa air tanah dengan nilai DHL lebih dari 1200 mmhos/cm sudah tidak digunakan lagi sebagai sumber air minum sehari-hari. Berdasarkan hal ini sampel nomor 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38 dan 39, termasuk dalam kriteria tersebut.

2) Ditinjau dari tingkat kekeruhannya, air tanah di daerah penelitian tidak layak untuk digunakan sebagai sumber air minum sehar-hari. PERMENKES No. 416 Tahun 1990, mensyaratkan nilai 5 NTU sebagai kekeruhan maksimum yang diperbolehkan dalam air minum.

3) Ditinjau dari kesadahannya, 26 sampel sudah tidak layak untuk sumber air minum, yaitu sampel nomor 3, 4, 5, 7,
10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 26, 27, 28, 29, 30, 32, 33, 36, 38, 39 dan 43. PERMENKES No.416 Tahun 1990 mensyaratkan kadar kesadahan kurang dari 500 mg/l untuk air yang akan digunakan sebagai air minum.

4) Ditinjau dari kadar kalsiumnya, SK. Meneg. KLH No. 2 Tahun 1988, mensyaratkan kadar kalsium 200 mg/l sebagai batas maksimum yang diperbolehkan. Berdasarkan kriteria ini, sampel nomor 4, 7, 10, 11, 21, 22, 27, 30 tidak layak untuk dijadikan sumber air minum.

5) Ditinjau dari kadar magnesiumnya, SK. Meneg. KLH. No. 2 Tahun 1988, kadar magnesium 150 mg/l sebagai batas maksimum yang diperbolehkan. Berdasarkan kriteria ini, ada tiga sampel yang kadar magnesiumnya melebihi batas yang diperbolehkan yaitu sampel nomor 10, 29 dan 30, yang masing-masing berkadar magnesium 175, 206 dan 417 mg/l.

6) Ditinjau dari kadar natriumnya, PERMENKES No. 416 Tahun 1990, menetapkan nilai 200 mg/l sebagai kadar natrium maksimum yang diperbolehkan terdapat dalam sumber air minum. Berdasarkan kriteria tersebut, sampel nomor 3, 7, 10, 11, 18, 20, 21, 22, 27 dan 30 tidak layak untuk dijadikan sumber air minum.

7) Ditinjau dari kadar kloridanya, PERMENKES No. 416 Tahun 1990, mensyaratkan kadar klorida 250 mg/l sebagai batas maksimum yang diperbolehkan. Berdasarkan kriteria tersebut, sampel nomor 3, 4, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36 dan 39, tidak layak untuk digunakan sebagai sumber air minum sehari-hari.

Gambar 2. Penentuan Sub-Tipe Berdasarkan Keseimbangan Kation dan Anion
8) Ditinjau dari kadar besinya, PERMENKES No. 416 Tahun 1990, mensyaratkan kadar besi 0,3 mg/l sebagai batas maksimum yang diperbolehkan. Berdasarkan criteria ini, sampel nomor 14 dan 15 tidak layak untuk dijadikan sumber air minum.

9) Ditinjau dari kadar mangannya, PERMENKES No. 416 Tahun 1990, mensyaratkan kadar mangan 0,1 mg/l sebagai batas maksimum yang diperbolehkan. Berdasarkan criteria ini, sampel nomor 4, 8, 10, 11, 13, 25, 26, 27, 28, 29, 30, 32, 38, 39, 44, 54 dan 61 tidak layak untuk digunakan sebagai sumber air minum sehari-hari.

10) Ditinjau dari kadar nitratnya, PERMENKES No. 416 Tahun 1990, mensyaratkan air tanah dengan kadar nitrat 10 mg/l sebagai batas maksimum yang diperbolehkan. Berdasarkan criteria tersebut, sampel nomor 9, 23, 24, 26, 45 dan 46 tidak layak untuk dijadikan sumber air minum.

11) Ditinjau dari kadar salinitasnya, berdasarkan pengamatan di lapangan, air tanah dengan kadar salinitas lebih dari 600 mg/l tidak digunakan lagi oleh penduduk setempat sebagai sumber air minum sehari-hari. Berdasarkan hal ini, sampel nomor 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 27, 28, 29, 30, 36 dan 37 termasuk dalam criteria tersebut.

Analisis Sifat Kimia Air Tanah dengan Diagram Stiff

Sifat kimia air tanah di daerah penelitian dianalisis menggunakan diagram Stiff. Dengan diagram ini dapat dilihat secara cepat, distribusi ion-ion dominan di daerah penelitian secara serempak. Hasil pengaluran diagram Stiff ditunjukkan pada Gambar 3. Dari Gambar 3 tersebut terlihat bahwa bentuk dan ukuran diagram Stiff berubah dari satu tempat ke tempat lain.

Dengan melihat luas masing-masing diagram, secara umum diagram Stiff yang terdapat di daerah penelitian bagian utara memiliki ukuran yang lebih besar daripada diagram Stiff di daerah penelitian bagian selatan. Hal itu berarti, kadar ion dominan dalam air tanah di daerah penelitian bagian utara lebih besar daripada kadar ion dominan dalam air tanah di daerah penelitian bagian selatan. Secara lebih rinci, terlihat bahwa perbedaan tersebut terutama disebabkan oleh luasan diagram Stiff pada bagian kanan sumber, yang artinya disebabkan oleh besarnya kadar anion atau ion negatif.

Dengan melihat panjang garis pada anion, terlihat bahwa di daerah penelitian bagian utara ion klorida merupakan ion dengan kadar tertinggi, sedangkan di bagian selatan yang air tanahnya tawar, ion bikarbonat merupakan ion dengan kadar tertinggi. Untuk kation, dengan melihat bentuk diagram pada sumbu bagian kiri, terlihat bahwa di daerah penelitian bagian utara kadar ion kalsium relatif sama dengan ion natrium ditambah dengan kalsium, sedangkan di bagian selatan kadar ion kalsium dan juga magnesium jauh lebih tinggi daripada ion natrium ditambah kalsium. Berdasarkan hasil ini dapat diketahui bahwa pada daerah air asin, kadar ion natrium
dan kloridanya tinggi, sedangkan pada daerah air tawar yang dominan adalah ion kalsium, magnesium dan bikarbonat. Fenomena ini cukup menarik, karena ternyata faktor perbedaan kepadatan penduduk tidak berpengaruh terhadap tingginya kadar ion dominan di daerah penelitian.

Ditinjau dari bentuknya, ternyata bentuk diagram Stiff di daerah penelitian sangat bervariasi, sehingga karakteristik kimia air tanahnya pun akan sangat bervariasi. Meskipun demikian secara garis besar, daerah-daerah yang berdekatan memperlihatkan bentuk diagram Stiff yang relatif sama, yang menunjukkan tipe kimia air tanah yang sama, disebabkan oleh kondisi lingkungan yang sama. Sebagai contoh diagram Stiff di Kecamatan Candisari yang memperlihatkan ukuran dan bentuk yang relatif serupa, demikian pula dengan diagram Stiff di daerah Panggung dan Kecamatan Semarang Selatan. Meskipun demikian, kadang-kadang pada daerah yang berdekatan pun terdapat diagram Stiff yang bentuk dan ukurannya berbeda. Perbedaan ini dapat disebabkan oleh pengaruh lingkungan lokal, seperti misalnya tata guna lahan dan kegiatan industri.

Klasifikasi Tipe Kimia Air dengan Metode Stuyfzand

Seperti telah dikemukakan dalam metode penelitian, dalam klasifikasi Stuyfzand tipe kimia air dibedakan menjadi tipe utama, tipe, sub tipe dan kelas. Berikut ini disajikan perhitungan untuk masing-masing pembagian tersebut.

Gambar 3. Peta Distribusi Diagram Stiff Daerah Penelitian
Tipe utama

Untuk menentukan tipe utama, digunakan besarnya konsentrasi ion klorida sebagai dasar perhitungan, yang hasilnya ditunjukkan pada Lampiran 1. Berdasarkan Lampiran 1 tersebut dapat diketahui bahwa dari 59 sampel air tanah yang diambil, 27 sampel tergolong air tawar, lima sampel tergolong air tawar-payau, 12 sampel tergolong air payau dan 15 sampel tergolong air payau-asin. Sampel-sampel yang tergolong air payau-asin umumnya terdapat di dekat pantai, sedangkan sampel-sampel yang tergolong air tawar umumnya terdapat pada jarak yang lebih jauh dari pantai.

Tipe

Dalam klasifikasi hidrokimia metode Stuyfzand, penentuan tipe kimia air tanah mendasarkan pada nilai kesadahan yang disebabkan oleh ion Ca\(^{2+}\) dan Mg\(^{2+}\). Pada Lampiran 2 ditunjukkan hasil perhitungan tersebut untuk masing-masing sampel.

Dari Lampiran 2 tersebut dapat diketahui bahwa dari 59 sampel air yang diambil, 38 sampel tergolong dalam tipe amat sangat sadah dan 21 sampel tergolong dalam tipe sangat sadah. Tipe amat sangat sadah umumnya terdapat pada sampel air yang diambil di dekat pantai, sedangkan tipe sangat sadah umumnya terdapat pada sampel air yang berada lebih jauh dari pantai.

Sub-tipe

Penentuan sub tipe didasarkan pada konsentrasi kation dan anion yang dominan. Pada Lampiran 3 ditunjukkan hasil penentuan sub tipe berdasarkan kriteria tersebut. Berdasarkan Lampiran 3 tersebut dapat diketahui bahwa dari 59 sampel air yang diambil, 23 sampel bersub-tipe Ca\(^{2+}\)/HCO\(^{-}\), lima sampel bersub-tipe Mg\(^{2+}\)/HCO\(^{-}\), empat sampel bersub-tipe Mg\(^{2+}\)/Mix, 18 sampel bersub-tipe Ca\(^{2+}\)/Cl, delapan sampel bersub-tipe Mg\(^{2+}\)/Cl dan satu sampel mempunyai sub-tipe Na\(^{+}\)/Cl.

Kelas

Untuk tiap sub-tipe dibagi menjadi tiga kelas menurut jumlah kation Na\(^{+}\), K\(^{+}\) dan Mg\(^{2+}\). Pada Lampiran 4 ditunjukkan hasil penentuan kelas untuk masing-masing sampel. Selanjutnya dari Lampiran 4 tersebut dapat diketahui bahwa dari 59 sampel yang diambil, 24 sampel termasuk kelas (+) atau memiliki tambahan air tawar yang lebih besar dari pada air laut, 10 sampel termasuk kelas (0) atau memiliki tambahan air tawar dan laut seimbang dan 25 sampel termasuk kelas (-) atau memiliki tambahan air laut lebih besar dari pada air tawar. Selanjutnya berdasarkan hasil penentuan tipe utama, tipe, sub-tipe dan kelas tersebut, dapat ditentukan tipe kimia tiap sampel air yang ditunjukkan pada Tabel 4.

Dari Tabel 4 tersebut dapat diketahui bahwa dari 59 sampel air tanah yang diambil, 13 sampel mempunyai tipe kimia F/2/Ca\(^{2+}\)/HCO\(^{-}\), tiga sampel tipe B/3/Ca\(^{2+}\)/Cl\(^{-}\), enam sampel tipe F/2/Ca\(^{2+}\)/HCO\(^{-}\)/0, lima sampel tipe B/4/Ca\(^{2+}\)/Cl\(^{-}\), empat sampel bertipe B/3/Ca\(^{2+}\)/Cl\(^{-}\), tiga sampel bertipe B/3/Mg\(^{2+}\)/Cl\(^{-}\), masing-masing dua sampel bertipe F/3/Ca\(^{2+}\)/HCO\(^{-}\), F/3/Mg\(^{2+}\)/HCO\(^{-}\), B/4/Mg\(^{2+}\)/Cl\(^{-}\), Fb/3/Mg\(^{2+}\)/Mix\(^{3+}\) dan masing-masing satu.
sampel bertipe hidrokimia F/2/Mg\(^{2+}\)/HCO\(^{-}\)/+, B/4/Ca\(^{2+}\)/Cl\(^{-}\)/-, Fb/3/Ca\(^{2+}\)/HCO\(^{-}\)/+, F/2/Mg\(^{2+}\)/HCO\(^{-}\)/Cl\(^{-}\)/-, F/3/Mg\(^{2+}\)/HCO\(^{-}\)/+, B/4/Ca\(^{2+}\)/Cl\(^{-}\)/-, B/3/Mg\(^{2+}\)/Cl\(^{-}\)/-, B/4/Mg\(^{2+}\)/Cl\(^{-}\)/-, Fb/3/Mg\(^{2+}\)/Mix/0, Fb/4/Ca\(^{2+}\)/HCO\(^{-}\)/Cl\(^{-}\)/-, B/3/Mg\(^{2+}\)/Mix/-, F/2/Mg\(^{2+}\)/Cl\(^{-}\)/+.

Air tanah bertipe F/2/Ca\(^{2+}\)/HCO\(^{-}\)/+ sebagai tipe hidrokimia yang paling banyak dijumpai, adalah air tanah dengan kadar klorida kurang dari 150 mg/l atau air tawar, airnya sangat sadah, ion yang dominan kalsium dan bikarbonat serta adanya tambahan air asin yang jauh dari pantai.

Air tanah dengan tipe B/3/Ca\(^{2+}\)/Cl\(^{-}\)/- adalah air tanah dengan kadar klorida 300 – 1000 mg/l atau air payau, airnya amat sangat sadah, ion yang dominan kalsium dan klorida serta adanya tambahan air asin yang lebih besar daripada air tawar. Air tanah bertipe F/2/Ca\(^{2+}\)/HCO\(^{-}\)/0 adalah air tanah dengan kadar klorida kurang dari 150 mg/l atau air tawar, sangat sadah, ion yang dominan kalsium dan bikarbonat serta adanya tambahan air asin dan air tawar yang seimbang.

Berikutnya adalah tipe Bs/4/Ca\(^{2+}\)/Cl\(^{-}\)/- dan Bs/3/Ca\(^{2+}\)/Cl\(^{-}\)/- yang artinya air tanah berkadar klorida antara 1000-10.000 mg/l atau air payau-asin, amat sangat sadah, ion yang dominan kalsium dan klorida serta adanya tambahan air asin lebih besar daripada air tawar. Tipe Bs/3/Mg\(^{2+}\)/Cl\(^{-}\)/- juga serupa dengan kedua tipe tersebut, tetapi kation yang dominan magnesium. Air tanah pada ketiga tipe ini merupakan air asin. Air tanah dengan tipe hidrokimia F/3/Ca\(^{2+}\)/HCO\(^{-}\)/+ adalah air tanah dengan kadar klorida kurang dari 150 mg/l, amat sangat sadah dengan ion dominan kalsium dan magnesium serta terjadi penambahan air tawar. Tipe F/3/Mg\(^{2+}\)/HCO\(^{-}\)/+ serupa dengan F/3/Ca\(^{2+}\)/HCO\(^{-}\)/+, tetapi kation yang dominan adalah magnesium. Air tanah dengan kedua tipe hidrokimia ini merupakan air tawar.

Berikutnya adalah tipe Bs/4/Mg\(^{2+}\)/Cl\(^{-}\)/-, yaitu air tanah berkadar klorida 1000 – 10000 mg/l, airnya amat sangat sadah dengan ion dominan magnesium dan klorida. Terjadi penambahan air asin lebih besar daripada air tawar, sehingga air berasa payau-asin. Tipe Fb/3/Mg\(^{2+}\)/Mix/+ adalah tipe hidrokimia dengan kadar klorida 150 – 300 mg/l dan air amat sangat sadah. Kation dominan magnesium, sedangkan anionnya berkadar seimbang. Pada tipe ini juga terjadi penambahan air tawar, dan air berasa tawar.

Tipe hidrokimia F/2/Mg\(^{2+}\)/HCO\(^{-}\)/+ serupa dengan F/3/Mg\(^{2+}\)/HCO\(^{-}\)/+, tetapi airnya sangat sadah, sedangkan tipe B/4/Ca\(^{2+}\)/Cl\(^{-}\)/- serupa dengan Bs/4/Ca\(^{2+}\)/Cl\(^{-}\)/-, tetapi kadar kloridanya antara 300 – 1000 mg/l, sehingga berasa payau. Untuk tipe Fb/3/Ca\(^{2+}\)/HCO\(^{-}\)/+ serupa dengan F/3/Ca\(^{2+}\)/HCO\(^{-}\)/+, tetapi kadar kloridanya 150 – 300 mg/l, sehingga airnya berasa tawar-payau.

Selanjutnya adalah tipe F/2/Mg\(^{2+}\)/HCO\(^{-}\)/0 yaitu tipe air berkadar klorida kurang dari 150 mg/l, airnya sangat sadah dengan...
<table>
<thead>
<tr>
<th>Nomor Sampel</th>
<th>Lokasi</th>
<th>Tipe kimia Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tambakharjo</td>
<td>F/3/Ca++/HCO3-/+</td>
</tr>
<tr>
<td>2</td>
<td>Mangkang Kulon</td>
<td>F/2/Mg++/HCO3-/+</td>
</tr>
<tr>
<td>3</td>
<td>Mangunharjo</td>
<td>B/4/Ca++/Cl-/</td>
</tr>
<tr>
<td>4</td>
<td>Mangkang Wetan</td>
<td>B/4/Ca++/Cl-/0</td>
</tr>
<tr>
<td>5</td>
<td>Raadugarut</td>
<td>F/3/Mg++/HCO3-/+</td>
</tr>
<tr>
<td>6</td>
<td>Raadugarut</td>
<td>F/3/Mg++/HCO3-/+</td>
</tr>
<tr>
<td>7</td>
<td>Tugarejo</td>
<td>B/4/Mg++/HCO3-/0</td>
</tr>
<tr>
<td>8</td>
<td>Tugarejo</td>
<td>F/3/Mg++/HCO3-/+</td>
</tr>
<tr>
<td>9</td>
<td>Tugarejo</td>
<td>B/4/Ca++/Cl-/</td>
</tr>
<tr>
<td>10</td>
<td>Jerakah</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>11</td>
<td>Jerakah</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>12</td>
<td>Jerakah</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>13</td>
<td>Tambakharjo</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>14</td>
<td>Jerakah</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>15</td>
<td>Jerakah</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>16</td>
<td>Krapyak</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>17</td>
<td>Tawangani</td>
<td>B/4/Mg++/Cl-/</td>
</tr>
<tr>
<td>18</td>
<td>Tawangani</td>
<td>B/4/Mg++/Cl-/</td>
</tr>
<tr>
<td>19</td>
<td>Sungai Garang</td>
<td>B/4/Mg++/Cl-/</td>
</tr>
<tr>
<td>20</td>
<td>Fanggung Kidul</td>
<td>B/4/Ca++/Cl-/</td>
</tr>
<tr>
<td>21</td>
<td>Bulu Lor</td>
<td>B/4/Ca++/Cl-/</td>
</tr>
<tr>
<td>22</td>
<td>Melinti Barat</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>23</td>
<td>Purwomartani</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>24</td>
<td>Dusipani</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>25</td>
<td>Bandarharjo</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>26</td>
<td>Kemijen</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>27</td>
<td>Mhibarjo</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>28</td>
<td>Tambarejo</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>29</td>
<td>Kemijen</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>30</td>
<td>S.Semarang Tamur</td>
<td>B/4/Mg++/Cl-/0</td>
</tr>
<tr>
<td>31</td>
<td>S.Semarang Tamur</td>
<td>B/3/Ca++/Cl-/</td>
</tr>
<tr>
<td>32</td>
<td>Bantuwo</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>33</td>
<td>Tlogosari</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>34</td>
<td>Muktiharjo</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>35</td>
<td>Sambungharjo</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>36</td>
<td>Tlogomulyo</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>37</td>
<td>Sambungharjo</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>38</td>
<td>Tlogosari</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>39</td>
<td>Muktiharjo</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>40</td>
<td>Sunsi Girang</td>
<td>B/3/Mg++/Cl-/</td>
</tr>
<tr>
<td>41</td>
<td>Jigalan</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>42</td>
<td>Kenggian</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>43</td>
<td>Brumbung</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>44</td>
<td>Petunden</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>45</td>
<td>Rejosari</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>46</td>
<td>Karangempel</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>47</td>
<td>Wonoerdri</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>48</td>
<td>Wonotunggal</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>49</td>
<td>Wonoerdri</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>50</td>
<td>Lamper Kidul</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>51</td>
<td>Wonodri</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>52</td>
<td>Sendunggwo</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>53</td>
<td>Randusari</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>54</td>
<td>Fetompion</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>55</td>
<td>Randusari</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>56</td>
<td>Bansari</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>57</td>
<td>Padukan Baru</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>58</td>
<td>Lemahgempal</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>59</td>
<td>Bojongksamalan</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>60</td>
<td>Kareskumpul</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>61</td>
<td>Grahimagen</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>62</td>
<td>Kilimui</td>
<td>F/2/Ca++/HCO3-/0</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ne dominan magnesium dan bikarbonat erta terjadi penambahan air tawar dan asin ang seimbang. Tipe hidrokimia F/3/Mg²⁺/HCO₃⁻/serupa dengan F/3/Mg²⁺/HCO₃⁻/, hanya saja terjadi penambahan air asin yang teh besar daripada air tawar. Air tanah bertipe ni masih berasa tawar, tetapi kemungkinan an berasa payau hingga asin di masa mendatang. Air tanah tipe Bs/4/Na⁺/Cl⁻/serupa dengan Bs/4/Mg²⁺/Cl⁻/, tetapi kation dominan natrium, sedangkan tipe B/4/Ca²⁺/Cl⁻/0 serupa dengan Bs/4/Ca²⁺/Cl⁻/tetapi kadar kloridanya 1000 – 10000 mg/1. Tipe B/3/Mg²⁺/Cl⁻/ dan B/4/Mg²⁺/Cl⁻/serupa dengan B/3/Ca²⁺/Cl⁻/*, tetapi kation an ion dominan kalsium.

Selanjutnya adalah air tanah dengan tipe hidrokimia Fb/3/Mg²⁺/Mix/0, yaitu air tanah dengan kadar klorida 150 – 300 mg/l, airnya amat sangat sadah dan kation yang dominan magnesium. Kadar anion untuk air tanah tipe ini seimbang, demikian pula terjadi keseimbangan tambahan air tawar dan asin, sehingga air berasa tawar-payau. Tipe hidrokimia Fb/4/Ca²⁺/HCO₃⁻/0 adalah tipe air dengan kadar klorida 150 – 300 mg/l, airnya amat sangat sadah dengan ion dominan kalsium dan bikarbonat. Terjadi penambahan air tawar dan asin yang seimbang, sehingga air tanah dengan tipe ini berasa tawar-payau. Tipe B/3/Mg²⁺/Mix/- serupa dengan B/3/Mg²⁺/Cl⁻/-, tetapi kadar anionnya seimbang. Tipe F/2/Mg²⁺/Cl⁻/+ serupa dengan F/2/Mg²⁺/HCO₃⁻/+*, tetapi anion dominan klorida. Selanjutnya pada Gambar 4 ditunjukkan distribusi masing-masing tipe kimia air tanah di daerah penelitian.

![Diagram](image-url)

Gambar 4. Peta Distribusi Tipe Kimia Air Tanah Daerah Penelitian
KESIMPULAN

1) Air tanah di daerah penelitian pada umumnya tidak layak untuk dijadikan sumber air minum. Sebagian besar air tanah mempunyai nilai DHL, kekeruhan dan kesadahan tinggi, serta kadar ion klorida, mangan dan salinitas yang tinggi pula. Tingginya kadar ion-ion tersebut (terutama ion klorida) serta salinitas mengindikasikan bahwa air tanah telah tercemar air asin.

2) Hasil analisis menggunakan diagram Stiff menunjukkan bahwa karakteristik kimia air tanah di daerah penelitian sangat bervariasi. Meskipun demikian, secara umum kadar ion utama pada air tanah di daerah pantai lebih tinggi daripada air tanah di daerah hulu, dengan ion klorida sebagai ion dengan kadar tertinggi.

3) Hasil analisis metode Stuyfzand menunjukkan bahwa tipe kimia air tanah di daerah penelitian sangat bervariasi. Meskipun demikian, tipe F/2/Ca²⁺/HCO₃⁻/⁺ merupakan tipe kimia paling sering ditemukan di daerah penelitian, serta terjadinya tambahan air asin yang lebih besar daripada air tawar pada air tanah di daerah pantai.

DAFTAR PUSTAKA

<table>
<thead>
<tr>
<th>Nomor Sampel</th>
<th>DHL (umhos/cm)</th>
<th>Cl (mg/l)</th>
<th>Kode</th>
<th>Tipe Utama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>526</td>
<td>77,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>2</td>
<td>487</td>
<td>61,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>3</td>
<td>510</td>
<td>1671</td>
<td>F</td>
<td>Air payau</td>
</tr>
<tr>
<td>4</td>
<td>1269</td>
<td>348</td>
<td>Fb</td>
<td>Air tawar-payau</td>
</tr>
<tr>
<td>5</td>
<td>1725</td>
<td>179</td>
<td>B</td>
<td>Air tawar</td>
</tr>
<tr>
<td>6</td>
<td>1202</td>
<td>105</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>7</td>
<td>5480</td>
<td>2437</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>8</td>
<td>395</td>
<td>25,8</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>9</td>
<td>628</td>
<td>73,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>10</td>
<td>9210</td>
<td>4625</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>11</td>
<td>8891</td>
<td>819</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>12</td>
<td>1960</td>
<td>776</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>13</td>
<td>2540</td>
<td>736</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>14</td>
<td>3056</td>
<td>2268</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>15</td>
<td>2916</td>
<td>1223</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>16</td>
<td>850</td>
<td>1093</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>17</td>
<td>810</td>
<td>348</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>18</td>
<td>4300</td>
<td>1701</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>19</td>
<td>4906</td>
<td>7114</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>20</td>
<td>24800</td>
<td>16417</td>
<td>S</td>
<td>Air payau</td>
</tr>
<tr>
<td>21</td>
<td>7850</td>
<td>4477</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>22</td>
<td>5640</td>
<td>3749</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>23</td>
<td>2200</td>
<td>659</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>24</td>
<td>1850</td>
<td>567</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>25</td>
<td>1906</td>
<td>696</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>26</td>
<td>1876</td>
<td>1044</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>27</td>
<td>5960</td>
<td>3741</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>28</td>
<td>2806</td>
<td>1114</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>29</td>
<td>3030</td>
<td>985</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>30</td>
<td>5270</td>
<td>9701</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>31</td>
<td>19540</td>
<td>606</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>32</td>
<td>3130</td>
<td>1307</td>
<td>Bs</td>
<td>Air payau</td>
</tr>
<tr>
<td>33</td>
<td>2910</td>
<td>666</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>34</td>
<td>1412</td>
<td>672</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>35</td>
<td>1513</td>
<td>252</td>
<td>Fb</td>
<td>Air tawar-payau</td>
</tr>
<tr>
<td>36</td>
<td>1320</td>
<td>252</td>
<td>Fb</td>
<td>Air tawar-payau</td>
</tr>
<tr>
<td>37</td>
<td>2720</td>
<td>181</td>
<td>Fb</td>
<td>Air tawar-payau</td>
</tr>
<tr>
<td>38</td>
<td>2300</td>
<td>181</td>
<td>Fb</td>
<td>Air tawar-payau</td>
</tr>
<tr>
<td>39</td>
<td>2390</td>
<td>604</td>
<td>B</td>
<td>Air payau</td>
</tr>
<tr>
<td>40</td>
<td>697</td>
<td>65,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>41</td>
<td>690</td>
<td>101</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>42</td>
<td>760</td>
<td>99,5</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>43</td>
<td>790</td>
<td>39,8</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>44</td>
<td>653</td>
<td>51,7</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>45</td>
<td>668</td>
<td>81,5</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>46</td>
<td>735</td>
<td>77,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>47</td>
<td>685</td>
<td>73,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>48</td>
<td>680</td>
<td>65,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>49</td>
<td>530</td>
<td>73,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>50</td>
<td>548</td>
<td>71,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>51</td>
<td>540</td>
<td>71,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>52</td>
<td>519</td>
<td>53,7</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>53</td>
<td>810</td>
<td>67,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>54</td>
<td>480</td>
<td>69,6</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>55</td>
<td>403</td>
<td>81,5</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>56</td>
<td>631</td>
<td>47,7</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>57</td>
<td>593</td>
<td>49,7</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>58</td>
<td>790</td>
<td>45,7</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>59</td>
<td>1906</td>
<td>39,8</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>60</td>
<td>410</td>
<td>39,8</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>61</td>
<td>520</td>
<td>41,7</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>62</td>
<td>531</td>
<td>37,8</td>
<td>F</td>
<td>Air tawar</td>
</tr>
<tr>
<td>63</td>
<td>510</td>
<td>45,7</td>
<td>F</td>
<td>Air tawar</td>
</tr>
</tbody>
</table>

* Sampel air Sungai Garang
** Sampel air Sungai Semarang Timur
Lampiran 2. Penentuan Tipe Kimia Air

<table>
<thead>
<tr>
<th>Nomor Sampel</th>
<th>Ca** (mmol/l)</th>
<th>Mg** (mmol/l)</th>
<th>Ca** + Mg** (mmol/l)</th>
<th>Kode</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,2</td>
<td>2,0</td>
<td>5,2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>1,9</td>
<td>3,4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4,3</td>
<td>4,0</td>
<td>8,3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>7,1</td>
<td>3,4</td>
<td>10,5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3,2</td>
<td>2,5</td>
<td>5,7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3,5</td>
<td>3,2</td>
<td>6,7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>8,3</td>
<td>2,7</td>
<td>11,0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1,5</td>
<td>1,7</td>
<td>3,2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3,0</td>
<td>2,9</td>
<td>5,9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>5,8</td>
<td>7,2</td>
<td>13,0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3,9</td>
<td>5,2</td>
<td>9,1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>4,3</td>
<td>2,2</td>
<td>6,5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>4,0</td>
<td>2,2</td>
<td>6,2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>3,2</td>
<td>2,5</td>
<td>5,7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>4,3</td>
<td>1,1</td>
<td>5,4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>2,4</td>
<td>3,5</td>
<td>5,9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>2,2</td>
<td>2,5</td>
<td>4,7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>4,5</td>
<td>4,9</td>
<td>9,4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>3,2</td>
<td>5,3</td>
<td>8,5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>4,1</td>
<td>5,4</td>
<td>9,5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>8,5</td>
<td>1,6</td>
<td>10,1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>7,0</td>
<td>2,8</td>
<td>9,8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>3,4</td>
<td>1,1</td>
<td>4,5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>2,9</td>
<td>1,1</td>
<td>4,0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>3,4</td>
<td>0,6</td>
<td>4,0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>3,7</td>
<td>4,1</td>
<td>7,8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>9,8</td>
<td>2,2</td>
<td>12,0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>4,3</td>
<td>1,0</td>
<td>5,3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>2,6</td>
<td>8,5</td>
<td>11,1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>6,6</td>
<td>0,2</td>
<td>6,8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>5,0</td>
<td>5,7</td>
<td>10,7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>3,0</td>
<td>2,3</td>
<td>5,3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>3,6</td>
<td>1,9</td>
<td>5,5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>3,9</td>
<td>1,6</td>
<td>5,5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>3,4</td>
<td>2,2</td>
<td>5,6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>2,9</td>
<td>4,4</td>
<td>7,3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>6,8</td>
<td>1,9</td>
<td>8,7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>2,4</td>
<td>5,4</td>
<td>7,8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>2,1</td>
<td>4,1</td>
<td>6,2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>1,9</td>
<td>2,9</td>
<td>4,0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>1,8</td>
<td>1,4</td>
<td>3,2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>2,4</td>
<td>1,2</td>
<td>3,6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>2,6</td>
<td>2,5</td>
<td>5,1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>44</td>
<td>2,0</td>
<td>1,6</td>
<td>3,6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>2,3</td>
<td>0,8</td>
<td>3,1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>46</td>
<td>1,9</td>
<td>2,3</td>
<td>2,1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>3,4</td>
<td>3,7</td>
<td>7,1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>2,8</td>
<td>0,6</td>
<td>3,4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>49</td>
<td>2,8</td>
<td>1,1</td>
<td>3,9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>2,4</td>
<td>0,3</td>
<td>2,7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>1,9</td>
<td>0,8</td>
<td>2,7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>1,9</td>
<td>1,1</td>
<td>3,0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>1,1</td>
<td>0,9</td>
<td>2,0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>54</td>
<td>1,7</td>
<td>1,6</td>
<td>3,3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>0,8</td>
<td>1,4</td>
<td>2,2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>1,4</td>
<td>0,9</td>
<td>2,3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>2,6</td>
<td>0,3</td>
<td>2,9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>2,6</td>
<td>1,6</td>
<td>4,2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>1,4</td>
<td>1,4</td>
<td>2,8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>1,6</td>
<td>1,5</td>
<td>3,1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td>1,7</td>
<td>1,6</td>
<td>3,3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>1,4</td>
<td>1,2</td>
<td>2,6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>1,9</td>
<td>1,0</td>
<td>2,8</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* Sampel air Sungai Garang
** Sampel air Sungai Semarang Timur
Lampiran 3. Penentuan Sub-Tipe Kimia Air

<table>
<thead>
<tr>
<th>Nomor Sampel</th>
<th>DHL (mikros/cm)</th>
<th>Satuan</th>
<th>Na(^{++})+K(^{+})</th>
<th>Ca(^{++})+Mg(^{2+})</th>
<th>Cl(^{-})</th>
<th>HCO(_3)(^{-})</th>
<th>SO(_4)(^{2-})</th>
<th>Sub-tipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>526</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Ca(^{++})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>2</td>
<td>487</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>3</td>
<td>5010</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Ca(^{++})/Cl(^{-})</td>
</tr>
<tr>
<td>4</td>
<td>1260</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Ca(^{++})/Cl(^{-})</td>
</tr>
<tr>
<td>5</td>
<td>1725</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Ca(^{++})/Cl(^{-})</td>
</tr>
<tr>
<td>6</td>
<td>1202</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Ca(^{++})/Cl(^{-})</td>
</tr>
<tr>
<td>7</td>
<td>5480</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Ca(^{++})/Cl(^{-})</td>
</tr>
<tr>
<td>8</td>
<td>395</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>9</td>
<td>628</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>10</td>
<td>9210</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>11</td>
<td>8891</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>12</td>
<td>1960</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>13</td>
<td>2540</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>14</td>
<td>3050</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>15</td>
<td>2910</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>16</td>
<td>850</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>17</td>
<td>810</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>18</td>
<td>4300</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>19</td>
<td>4900</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>20</td>
<td>24800</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/HCO(_3)(^{-})</td>
</tr>
<tr>
<td>21</td>
<td>7850</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>22</td>
<td>5640</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>23</td>
<td>2200</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>24</td>
<td>1850</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>25</td>
<td>1900</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>26</td>
<td>1870</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>27</td>
<td>5960</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>28</td>
<td>2800</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>29</td>
<td>3030</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>30</td>
<td>5270</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>31</td>
<td>19540</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
<tr>
<td>32</td>
<td>3130</td>
<td>meq/l</td>
<td>1,0</td>
<td>8,3</td>
<td>2,2</td>
<td>10,0</td>
<td>0,3</td>
<td>Mg(^{2+})/Cl(^{-})</td>
</tr>
</tbody>
</table>

Kualitas dan Tipe Kimia Air Tanah ... (Setyawan Purnama) 149
<table>
<thead>
<tr>
<th>Nomor Sampel</th>
<th>DHL (mhos/cm)</th>
<th>Satuan</th>
<th>Na+ + K*</th>
<th>Ca2+ + Mg2+</th>
<th>CI</th>
<th>HCO3-</th>
<th>SO4-</th>
<th>Sub-tipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>2910</td>
<td>meq/1</td>
<td>3.9</td>
<td>11.6</td>
<td>18.9</td>
<td>6.6</td>
<td>0.3</td>
<td>Ca2+/Cl-</td>
</tr>
<tr>
<td>34</td>
<td>1412</td>
<td>meq/1</td>
<td>3.0</td>
<td>5.0</td>
<td>18.9</td>
<td>8.1</td>
<td>1.9</td>
<td>Ca2+/Cl-</td>
</tr>
<tr>
<td>35</td>
<td>1515</td>
<td>meq/1</td>
<td>3.0</td>
<td>5.6</td>
<td>18.9</td>
<td>8.1</td>
<td>1.9</td>
<td>Mg2+/Mix</td>
</tr>
<tr>
<td>36</td>
<td>1320</td>
<td>meq/1</td>
<td>2.5</td>
<td>14.7</td>
<td>7.1</td>
<td>8.9</td>
<td>1.9</td>
<td>Mg2+/Mix</td>
</tr>
<tr>
<td>37</td>
<td>2720</td>
<td>meq/1</td>
<td>2.5</td>
<td>17.4</td>
<td>7.1</td>
<td>8.9</td>
<td>1.9</td>
<td>Ca2+/HCO3-</td>
</tr>
<tr>
<td>38</td>
<td>2500</td>
<td>meq/1</td>
<td>1.2</td>
<td>87.4</td>
<td>32.1</td>
<td>52.2</td>
<td>15.7</td>
<td>Mg2+/Mix</td>
</tr>
<tr>
<td>39</td>
<td>2300</td>
<td>meq/1</td>
<td>4.3</td>
<td>15.6</td>
<td>5.1</td>
<td>9.0</td>
<td>5.4</td>
<td>Mg2+/Mix</td>
</tr>
<tr>
<td>40</td>
<td>6797</td>
<td>meq/1</td>
<td>1.8</td>
<td>7.9</td>
<td>9.9</td>
<td>3.1</td>
<td>0.2</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>41</td>
<td>690</td>
<td>meq/1</td>
<td>1.8</td>
<td>6.3</td>
<td>2.8</td>
<td>4.2</td>
<td>0.3</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>42</td>
<td>760</td>
<td>meq/1</td>
<td>1.7</td>
<td>7.3</td>
<td>2.8</td>
<td>34.2</td>
<td>0.2</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>43</td>
<td>790</td>
<td>meq/1</td>
<td>1.6</td>
<td>10.0</td>
<td>1.1</td>
<td>6.1</td>
<td>0.2</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>44</td>
<td>653</td>
<td>meq/1</td>
<td>1.5</td>
<td>7.2</td>
<td>1.5</td>
<td>5.9</td>
<td>0.2</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>45</td>
<td>668</td>
<td>meq/1</td>
<td>1.5</td>
<td>6.4</td>
<td>2.3</td>
<td>5.7</td>
<td>0.2</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>46</td>
<td>735</td>
<td>meq/1</td>
<td>1.5</td>
<td>8.6</td>
<td>2.2</td>
<td>6.6</td>
<td>0.3</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>47</td>
<td>683</td>
<td>meq/1</td>
<td>1.5</td>
<td>8.7</td>
<td>2.2</td>
<td>6.6</td>
<td>0.3</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>48</td>
<td>680</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.7</td>
<td>2.2</td>
<td>6.6</td>
<td>0.3</td>
<td>Mg2+/HCO3-</td>
</tr>
<tr>
<td>49</td>
<td>530</td>
<td>meq/1</td>
<td>1.4</td>
<td>7.8</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Ca2+/HCO3-</td>
</tr>
<tr>
<td>50</td>
<td>548</td>
<td>meq/1</td>
<td>1.5</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Ca2+/HCO3-</td>
</tr>
<tr>
<td>51</td>
<td>540</td>
<td>meq/1</td>
<td>1.5</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Ca2+/HCO3-</td>
</tr>
<tr>
<td>52</td>
<td>519</td>
<td>meq/1</td>
<td>1.5</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Ca2+/HCO3-</td>
</tr>
<tr>
<td>53</td>
<td>810</td>
<td>meq/1</td>
<td>1.0</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Ca2+/HCO3-</td>
</tr>
<tr>
<td>54</td>
<td>486</td>
<td>meq/1</td>
<td>0.9</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Ca2+/HCO3-</td>
</tr>
<tr>
<td>55</td>
<td>403</td>
<td>meq/1</td>
<td>1.0</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>56</td>
<td>631</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>57</td>
<td>593</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>58</td>
<td>790</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>59</td>
<td>393</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>60</td>
<td>410</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>61</td>
<td>320</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>62</td>
<td>331</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
<tr>
<td>63</td>
<td>510</td>
<td>meq/1</td>
<td>1.4</td>
<td>8.4</td>
<td>2.1</td>
<td>5.8</td>
<td>0.3</td>
<td>Mg2+/Cl-</td>
</tr>
</tbody>
</table>

* Sampel air Sungai Garang
** Sampel air Sungai Semarang Timur
Lampiran 4. Penentuan Kelas Kimia Air

<table>
<thead>
<tr>
<th>Nomor Sampel</th>
<th>DHL (mhos/cm)</th>
<th>Na⁺⁺⁺K⁺⁺⁺Mg²⁺-pengukuran (meq/l)</th>
<th>Na⁺⁺⁺K⁺⁺⁺Mg²⁺-Terkonteki (meq/l)</th>
<th>V(4 Cl⁻) (meq/l)</th>
<th>Kode</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>526</td>
<td>4,9</td>
<td>2,6</td>
<td>1,1</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>2</td>
<td>487</td>
<td>5,1</td>
<td>4,0</td>
<td>1,1</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>3</td>
<td>5010</td>
<td>18,5</td>
<td>12,5</td>
<td>4,9</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>4</td>
<td>1260</td>
<td>9,3</td>
<td>-1,1</td>
<td>2,2</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>5</td>
<td>1725</td>
<td>8,7</td>
<td>3,4</td>
<td>1,6</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>6</td>
<td>1202</td>
<td>9,7</td>
<td>6,6</td>
<td>1,2</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>7</td>
<td>5480</td>
<td>15,8</td>
<td>-57,1</td>
<td>5,9</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>8</td>
<td>355</td>
<td>4,3</td>
<td>3,6</td>
<td>0,6</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>9</td>
<td>628</td>
<td>7,1</td>
<td>4,9</td>
<td>1,0</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>10</td>
<td>9210</td>
<td>45,5</td>
<td>-92,5</td>
<td>8,1</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>11</td>
<td>8891</td>
<td>23,9</td>
<td>-86,6</td>
<td>3,4</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>12</td>
<td>1960</td>
<td>7,7</td>
<td>-15,5</td>
<td>3,3</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>13</td>
<td>2540</td>
<td>7,7</td>
<td>-14,4</td>
<td>3,2</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>14</td>
<td>3080</td>
<td>9,6</td>
<td>-28,2</td>
<td>5,7</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>15</td>
<td>2910</td>
<td>6,9</td>
<td>-29,7</td>
<td>4,2</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>16</td>
<td>850</td>
<td>9,0</td>
<td>-23,7</td>
<td>3,9</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>17</td>
<td>810</td>
<td>7,1</td>
<td>-3,3</td>
<td>2,2</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>18</td>
<td>4300</td>
<td>19,3</td>
<td>-31,5</td>
<td>4,9</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>19</td>
<td>4900</td>
<td>20,1</td>
<td>-192,8</td>
<td>10,0</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>20</td>
<td>24800</td>
<td>26,7</td>
<td>-646,6</td>
<td>15,2</td>
<td>-</td>
<td>Ada tambahan air asin**</td>
</tr>
<tr>
<td>21</td>
<td>7850</td>
<td>16,0</td>
<td>-118,0</td>
<td>7,9</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>22</td>
<td>5640</td>
<td>20,9</td>
<td>-91,4</td>
<td>7,3</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>23</td>
<td>2200</td>
<td>7,2</td>
<td>-12,5</td>
<td>3,1</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>24</td>
<td>1850</td>
<td>7,1</td>
<td>-9,8</td>
<td>2,5</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>25</td>
<td>1900</td>
<td>4,9</td>
<td>-15,9</td>
<td>3,1</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>26</td>
<td>1870</td>
<td>12,7</td>
<td>-18,5</td>
<td>3,8</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>27</td>
<td>5960</td>
<td>14,3</td>
<td>-97,6</td>
<td>7,3</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>28</td>
<td>2800</td>
<td>6,5</td>
<td>-26,8</td>
<td>4,0</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>29</td>
<td>3030</td>
<td>21,4</td>
<td>-8,1</td>
<td>3,7</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>30</td>
<td>5270</td>
<td>37,9</td>
<td>-252,5</td>
<td>11,7</td>
<td>-</td>
<td>Ada tambahan air asin**</td>
</tr>
<tr>
<td>31</td>
<td>19540</td>
<td>15,8</td>
<td>-2,3</td>
<td>0,2</td>
<td>0</td>
<td>Tambahkan air sembang*</td>
</tr>
<tr>
<td>32</td>
<td>3130</td>
<td>8,6</td>
<td>-30,6</td>
<td>4,3</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>33</td>
<td>2910</td>
<td>7,7</td>
<td>-12,4</td>
<td>3,1</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>34</td>
<td>1412</td>
<td>6,2</td>
<td>-13,9</td>
<td>3,1</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>35</td>
<td>1515</td>
<td>7,8</td>
<td>0,5</td>
<td>1,0</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>36</td>
<td>1320</td>
<td>11,4</td>
<td>3,9</td>
<td>1,2</td>
<td>+</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>37</td>
<td>2770</td>
<td>6,2</td>
<td>0,8</td>
<td>1,6</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>38</td>
<td>2500</td>
<td>15,1</td>
<td>9,7</td>
<td>1,6</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>39</td>
<td>2390</td>
<td>12,4</td>
<td>-5,6</td>
<td>2,9</td>
<td>-</td>
<td>Ada tambahan air asin</td>
</tr>
<tr>
<td>40</td>
<td>697</td>
<td>5,9</td>
<td>3,9</td>
<td>1,0</td>
<td>+</td>
<td>Ada tambahan air tawar**</td>
</tr>
<tr>
<td>41</td>
<td>690</td>
<td>4,6</td>
<td>1,6</td>
<td>1,2</td>
<td>+</td>
<td>Ada tambahan air tawar*</td>
</tr>
<tr>
<td>42</td>
<td>760</td>
<td>4,2</td>
<td>1,2</td>
<td>1,2</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>43</td>
<td>790</td>
<td>6,5</td>
<td>5,5</td>
<td>0,7</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>44</td>
<td>653</td>
<td>4,7</td>
<td>3,1</td>
<td>0,9</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>45</td>
<td>668</td>
<td>3,2</td>
<td>0,8</td>
<td>1,1</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>46</td>
<td>735</td>
<td>6,5</td>
<td>4,2</td>
<td>1,0</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>47</td>
<td>685</td>
<td>4,5</td>
<td>2,5</td>
<td>1,0</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>48</td>
<td>680</td>
<td>2,6</td>
<td>0,6</td>
<td>0,9</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>49</td>
<td>530</td>
<td>3,6</td>
<td>1,4</td>
<td>1,1</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>50</td>
<td>548</td>
<td>2,1</td>
<td>-0,1</td>
<td>1,0</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>51</td>
<td>540</td>
<td>3,0</td>
<td>1,3</td>
<td>1,0</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>52</td>
<td>519</td>
<td>3,2</td>
<td>1,6</td>
<td>0,9</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>53</td>
<td>810</td>
<td>2,9</td>
<td>0,9</td>
<td>1,0</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>54</td>
<td>480</td>
<td>4,0</td>
<td>1,9</td>
<td>1,0</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>55</td>
<td>403</td>
<td>3,8</td>
<td>1,4</td>
<td>1,1</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>56</td>
<td>631</td>
<td>3,3</td>
<td>1,9</td>
<td>0,8</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>57</td>
<td>593</td>
<td>2,0</td>
<td>0,5</td>
<td>0,8</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>58</td>
<td>790</td>
<td>4,4</td>
<td>3,0</td>
<td>0,8</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>59</td>
<td>393</td>
<td>1,8</td>
<td>2,5</td>
<td>0,8</td>
<td>0</td>
<td>Tambahkan air sembang</td>
</tr>
<tr>
<td>60</td>
<td>410</td>
<td>4,1</td>
<td>2,9</td>
<td>0,8</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>61</td>
<td>520</td>
<td>4,3</td>
<td>3,0</td>
<td>0,8</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>62</td>
<td>531</td>
<td>3,8</td>
<td>2,6</td>
<td>0,7</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
<tr>
<td>63</td>
<td>510</td>
<td>3,3</td>
<td>2,1</td>
<td>0,8</td>
<td>+</td>
<td>Ada tambahan air tawar</td>
</tr>
</tbody>
</table>

*Sampel air Sungai Garang
**Sampel air Sungai Semarang Timur

Kualitas dan Tipe Kimia Air Tanah... (Setyawan Purnama) 151