The Relationship between the Mixed Pixel Spectral Value of Landsat 8 OLI Data and LAPAN Surveillance Aircraft (LSA) Aerial-Photo Data

Nurwita Mustika Sari, Galdita Aruba Chulafak, Zylshal Zylshal, Dony Kushardono

DOI: https://doi.org/10.23917/forgeo.v31i1.3500

Abstract

Medium resolution satellite data such as Landsat is very potential for mixed pixel (mixel) to occur. Indonesian land use diverse especially urban areas makes high potential mixel in the first Landsat pixel size of 30 meters x 30 meters on the actual condition. Aircraft multispectral aerial photo data LAPAN Surveillance Aircraft (LSA) with a spatial resolution reached 58 cm can display objects in more detail in these sizes. The purpose of this research is to study mixel on Landsat data with multispectral data LSA as a complement Landsat data. The method proposed in this study is a visual interpretation with GEOBIA method for classification of land cover, and then test the validity of the sample to be used in research, and the use of such vegetation index NDVI to see the connection between vegetation index data of vegetation index LSA with Landsat data. The results showed that the regression equation obtained by regression between NDVI of Landsat data and NDVI of  LSA with a significance of less than 0.05 is y = 0.732x - 0102 with a value of R2 = 0.887. Through these results we can conclude that the NDVI values on both the data related to one another.

Keywords

Mixed pixel; aerial remote sensing; Landsat; OBIA; NDVI

Full Text:

PDF HTML

References

Arifin, S., Annas, A., Sari, N. M., Kushardono, D. (2015) Identifikasi dan Interpretasi Visual Citra Kamera Digital Multispektral untuk Objek Wilayah Pesisir. Prosiding Seminar Nasional Penginderaan Jauh 2015, Bogor, Indonesia

Danoedoro, P. 2009. Penginderaan Jauh untuk Inventarisasi Mangrove; Potensi, Keterbatasan dan Kebutuhan Data. Prosiding Workshop “Sinergi Survei dan Pemetaan Nasional dalam Mendukung Pengelolaan Mangrove Berkelanjutan”, BAKOSURTANAL Bogor 30 Juli 2009

Deichmann, U., Balk, D., & Yetman, G. (2001). Transforming population data for interdisciplinary usages: from census to grid. Washington (DC): Center for International Earth Science Information Network, Pp 200(1)

Kushardono, D., Annas, A., Maryanto, A., Utama, A. A., Winanto (2014) Pemanfaatan Data LSA (LAPAN Surveillance Aircraft) Untuk Mendukung Pemetaan Skala Rinci. Prosiding Pertemuan Ilmiah Tahunan XX MAPIN 2014, Bogor

Fisher, P. (1997) The Pixel: A Snare and A Delusion. International Journal of Remote Sensing, February 1997 doi: 10.1080/014311697219015

Foody, G. M., Mathur, A. (2006) The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification: Training on Mixed Spectral Responsesfor Classification by A SVM. Remote Sensing of Environment 103 (2006) 179–189

Haque, M. I., Basak, R. (2017) Land Cover Change Detection Using GIS and Remote Sensing Techniques: A Spatio-temporal Study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Sciences (2017), http://dx.doi.org/10.1016/j.ejrs.2016.12.003

Hoyano, A., Komatsu, Y. (1988) Influence of Mixels on Land Cover Classification in Residential Areas Using Airborne MSS Data. ISPRS Archives – Volume XXVII Part B7, 1988

Iryadi, R., Sadewo, M. N. (2015) Influence the Existence of the Bali Botanical Garden for Land Cover Change in Bedugul Basin Using Landsat Time Series. Procedia Environmental Sciences 24, pp. 158 – 164

Ke, Y., Im, J., Lee, J., Gong, H., Ryu, Y. (2015) Characteristics of Landsat 8 OLI-derived NDVI by Comparison with Multiple Satellite Sensors and In-situ Observations. Remote Sensing of Environment 164, pp. 298–313

Kurniawan, F. Adrianto, L., Bengen, D. G., Prasetyo, L. B. (2016) Patterns of Landscape Change on Small Islands: A Case of Gili Matra Islands, Marine Tourism Park, Indonesia. Procedia Social and Behavioral Sciences 227, pp. 553 – 559

Lv, Zhi-qiang, Qi-gang Z. (2011) Utility of Landsat Image in the Study of Land Cover and Land Surface Temperature Change. Procedia Environmental Sciences , pp. 1287 – 1292

Marshall, A. D., Martin, R.R. (1992) Computer Vision, Models, and Inspection. World Scientific Series in Robotics and Automated Systems Vol. 4

Mikovits, C., Rauch, W., Kleidorfer, M. (2014) Dynamics in Urban Development, Population Growth and Their Influences on Urban Water Infrastructure. Procedia Engineering 70, pp. 1147 – 1156

Mokarram, M., Boloorani, A. D., Hojati, M. (2016) Relationship between Land Cover and Vegetation Indices. Case Study: Eghlid Plain, Fars Province, Iran. European Journal of Geography Volume 7, Number 2:48 - 60, June 2016

Monkkonen, P. 2013. Urban Land-use Regulations and Housing Markets in DevelopingCountries: Evidence from Indonesia on the Importance of Enforcement. Land Use Policy 34 (2013) 255–264

Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., Ip, A. (2016) Water Observations from Space: Mapping Surface Water from 25 Years of Landsat Imagery across Australia. Remote Sensing of Environment 174, pp. 341–352

Narulita, S., Zain, A. F. M., Prasetyo, L. B. (2016) Geographic Information System (GIS) Application on Urban Forest Development in Bandung City. Procedia Environmental Sciences 33, pp. 279-289

Nasihin, I., Prasetyo, L. B., Kartono, A. P., Kosmaryandi, N. (2016) Land Cover Change in Kuningan District during 1994 – 2015. Procedia Environmental Sciences 33, pp. 428 – 435

Parsa, I. M., Yudhatama, D., Harini, S. (2014) Validasi Model Pemetaan Lahan Sawah Menggunakan Teknik Segmentasi dan Klasifikasi Citra Landsat Ortho (Studi Kasus Lampung). Pemanfaatan Citra Penginderaan Jauh untuk Sumber Daya Wilayah Darat ISBN No : 978-602-14437-6-7

Pour, A. B., Hashim, M. (2015) Hydrothermal Alteration Mapping from Landsat-8 Data, Sar Cheshmeh Copper Mining District, South-Eastern Islamic Republic of Iran. Journal of Taibah University for Science 9, pp. 155–166

Rahayu, Candra, D. S. (2014) Koreksi Radiometrik Citra Landsat-8 Kanal Multispektral Menggunakan Top of Atmosphere (ToA) untuk Mendukung Klasifikasi Penutup Lahan. Prosiding Seminar Nasional Penginderaan Jauh 2014, Bogor

Rawlings, J. O., Pantula, S. G., Dickey, D. A. (2001) Applied Regression Analysis: A Research Tool. Springer Science & Business Media

Sari, N. M., Kushardono, D. (2015) Object Segmentation on UAV Photo Data to Support the Provision of Rural Area Spatial Information. Forum Geografi Vol. 29 (1) July 2015 49-58

Sari, N. M., Kushardono, D. (2016) Quality Analysis of Single Tree Object with OBIA and Vegetation Index from LAPAN Surveillance Aircraft Multispectral Data in Urban Area. Journal of Geomatics and Planning doi: 10.14710/geoplanning.3.2.93-106

Shapiro, S.S., Wilk, M. B. (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52 (3): 591-611 http://www.jstor.org/stable/2333709

Sholihah, R.I., H.T., Bambang, S., Diar, S. I., La Ode, K., Selamet, Manijo, R.P., Dyah. (2016) Identification of Agricultural Drought Extent Based on Vegetation Health Indices of Landsat Data: Case of Subang and Karawang, Indonesia. Procedia Environmental Sciences 33 (2016) 14 – 20

Smith, A. R., Colombi, J. M., Wirthlin, J. R. (2013) Rapid Development: A Content Analysis Comparison of Literature and Purposive Sampling of Rapid Reaction Projects. Procedia Computer Science 16, pp. 475 – 482

Sun, X., Du, H., Han, N., Zhou, G., Lu, D., Ge, H., Xu, X., Liu, L. (2014) Synergistic Use of Landsat TM and SPOT 5 imagery for Object-Based Forest Classification. Journal of Applied Remote Sensing Vol. 8 2014 083550-1 - 083550-15

Tarantino, C., Adamo, M., Lucas, R., Blonda, P. (2016) Detection of Changes in Semi-Natural Grasslands by Cross Correlation Analysis with WorldView-2 Images and New Landsat 8 Data. Remote Sensing of Environment 175, pp. 65–72

Tetracam Inc. 2011. Agricultural Camera Digital User’s Guide. Tetracam Inc. California, USA

Topp, L., Barker, B., Degenhardt, L. (2004) The External Validity of Results Derived from Ecstasy Users Recruited Using Purposive Sampling Strategies. Drug and Alcohol Dependence 73, pp. 33–40

Trimble Documentation (2014) Ecognition Developer Reference Book 9.0. Trimble Documentation München, Germany

USGS (2016) Landsat 8 Data Users Handbook. US Geological Survey Dept. of Interior South Dakota, USA

Vorontsova, A. V., Vorontsova, V. L., Salimgareev, D. V. (2016) The Development of Urban Areas and Spaces with the Mixed Functional Use. Procedia Engineering 150, pp. 1996-2000

Wang, J.X., W., Jun, Z., Fuxia. (2011) Investigate Research of Soil Erosion Base on Ikonos and Landsat Images in Jinning. Procedia Engineering 15, pp. 1345 – 1349

Wang, X., Cui, P. (2005) Support Soil Conservation Practices by Identifying Critical Erosion Areas within an American Watershed Using the GIS-AGNPS Model. Journal of Spatial Hydrology Vol. 5 No. 2 31-44

Widodo, B., Lupyanto, R., Sulistiono, B., Harjito, D. A., Hamidin, J.,Hapsari, E., M., Yasin, C., Ellinda. (2015) Analysis of Environmental Carrying Capacity for the Development of Sustainable Settlement in Yogyakarta Urban Area. Procedia Environmental Sciences 28 (2015) 519-527

Xing, Y., Liang, H., Xu, D. (2013) Sustainable Development Evaluation of Urban Traffic System. Procedia Social and Behavioral Sciences 96, pp. 496 – 504

Zald, H.S.J., Michael A.W., Joanne C.W., Thomas H., Txomin H., Geordie W.H., Nicholas C.C. (2016) Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and above ground biomass in Saskatchewan, Canada. Remote Sensing of Environment 176, pp. 188–201

Article Metrics

Abstract view(s): 1289 time(s)
PDF: 234 time(s) HTML: 422 time(s)

Refbacks

  • There are currently no refbacks.