Speleoclimate Monitoring to Assess Cave Tourism Capacity in Gelatik Cave, Gunungsewu Geopark, Indonesia

Danardono Danardono, Eko Bayu Dharma Putra, Eko Haryono, Emilya Nurjani, Muhammad Iqbal Taufiqurahman Sunariya

DOI: https://doi.org/10.23917/forgeo.v32i2.6958

Abstract

Increased of the number of visitor at Gelatik Cave is a challenge in terms of cave management. In natural conditions, Caves are vulnerable with environmental changes especially microclimates condition. The change of microclimate inside the cave can destruct cave ornaments.Therefore, it is necessary to calculate the cave carrying capacity with microclimates as the main parameter. This research aims to (1) explore the daily variation of speleoclimate in Gelatik Cave Tourism and (2) analyze the cave tourism capacity in Gelatik Cave. Microclimate parameter that was measured in this research was temperature, relative humidity, and carbon dioxide inside the cave. Measurement of microlimate parameter was carried out automatically for 24 hours during peak season in December 2017 and low season in May 2018. Cave tourism capacity was measured using Lobo method (Lobo, 2015). The results showed that temperature, relative humidity, and carbon dioxide in the Gelatik Cave varry due to tourism activities. The most sensitive parameter is the carbon dioxide concentration inside the cave. The maximum of tourists allowed to visit Gelatik Cave is 76 visitors/ day during holidays and working days. Meanwhile, the maximum time of stay accepted for a particular area inside Gelatik Cave is 17 minutes 10 seconds during weekdays and 12 minutes 53 seconds during the holiday season.

Keywords

Speleoclimate; Cave Tourism Capacity; Gelatik Cave

Full Text:

PDF HTML

References

Bogli, A. (1980) Karst Hydrology and Physical Speleology. Berlin: Springer-Verlag.

Calaforra, J.M., Fernandez-Cortez, A., Sanchez-Martos, F., Gisbert, J., Pulido-Bosch, A. (2003) Environmental Control for Determining Human Impact and Permanent Visitor Capacity in a Potential Show Cave Before Tourist Use. Environmental Conservation Journal. Vol.30(2), pp. 150-167.

Cigna, A.A., and Forti, P. (1986) The Speleogenetic Role of Air Flow Caused by Convection. International Journal of Speleology. Vol. 15, pp. 41-52.

Cigna, A.A. and Burri, E. (2000) Development, Management, and Economy of Show Cave. International Journal of Speleology. Vol. 29, pp. 1-27.

Cigna, A.A. (2004) Climate of Caves, In: Gunn J. (Ed.). Encyclopedia of Caves and Karst Science. London: Taylor and Francis.

Cigna, A.A., and Forti, P. (2013) Caves : The Most Important Geotouristic Feature in the World. Turismo e Paisagens Carstiac. Vol. 6, pp. 9-26.

De Freitas, C.R. (2010) The Role and Importance of Cave Microclimate in the Sustainable Use and Management of Show Cave. Acta Carsologica. Vol.26, pp. 477-491.

Fandelli, C. and Mukhlison. (2000) Pengusahaan Ekowisata. Yogyakarta: Pustaka Pelajar.

Fandelli, C. and Adji, T. N. (2005) Analisis Daya Dukung Goa untuk Pengembangan Ekowisata (Studi Kasus: Goa Gong dan Goa Tabuhan, Kabupaten Pacitan). Jurnal Masyarakat, Kebudayaan dan Politik. Vol.18, pp. 67-80.

Fernandez-Cortes, A., Calaforra, J.M., Sanchez-Martos, F. (2006a) Spatiotemporal Analysis of Air Condition as a Tool for the Environmental Management of a Show Cave (Cueva del Agoa, Spain). Atmospheric Environment. Vol. 40, pp. 7378-7394

Ford, D. and Williams, P. (2007) Karst Hydrogeology and Geomorphology. England: British library.

Haryono, E. and Adji, T.N. (2004) Pengantar Geomorfologi dan Hidrologi Karst. Yogyakarta: Kelompok Studi Karst Fakultas Geografi Universitas Gadjah Mada.

Hayati, S. (2010) Partisipasi Masyarakat dalam Pengembangan Ekowisata di Pangandaran, Jawa Barat. Forum Geografi. Vol. 24(1), pp.12-27.

Hoyos, M., Soler, V., Canavera, J.C., Sanchez-Moral, S., Sanz-Rubio, E. (1998) Microclimatic Characterization of a Karstic Cave : Human Impact on Microenvironmental Parameters of a Prehistoric Rock Art Cave (Candamo Cave, Northern Spain). Environmental Geology. Vol. 33, pp. 231-242.

Lang, M., Faimon, J., Camille, E. (2015) The Relationship Between Carbon dioxide Concentration and Visitor Numbers in the Homothermic Zone of the Balcarka Cave (Moravian Karst) during a Period of Limited Ventilation. International Journal of Speleology. Vol. 44(2), pp. 167-176.

Lario, J. and Soler, V. (2010) Microclimate Monitoring of Pozalagoa Cave (Vizcaya, Spain): Application to Management and Protection Show Cave Climate Monitoring of Pozalagoa Cave. Journal of Cave and Karst Studies. Vol. 72, pp. 169-180.

Lerra, T. (2003) Wilderness, In : Gunn J. (Ed.). Encyclopedia of Caves and Karst Science. London: Fitzroy Dearbon.

Lobo, H.A., Perinotto, J.A. de J., Boggiani, P.C. (2010) Tourist Carrying Capacity in Caves: Main Trends and New Methods in Brazil. 6th International; Congress of International Show Caves Association. Liptovsky Mikulas: Slovak Caves Administration, Vol. 1, pp. 108-115.

Lobo, H.A., Boggiani, P.C., and Perinotto, J.A. (2015) Speleoclimate dynamics in Santana Cave (PETAR, Sao Paulo State, Brazil): general caracterization and implications for tourist management. International Journal of Speleology. Vol. 44, pp. 61-73.

Lobo, H. A. (2015) Tourist Carrying Capacity of Santana Cave (PETAR-SP, Brazil): A New Method Based on a Critical Atmospheric Parameter. Tourist Management Perspective. Vol. 16, pp. 67-75.

Linhua, S., Xiaoning, W., and Fuyuan, L. (2000) The Influence of Cave Tourism on CO2 and Temperature in Baiyun Cave, Hebei, China. International Journal of Speleology. Vol. 29, pp. 77-87.

Luetscher, M. and Jeannin, P.Y. (2004) Temperature Distribution in Karst Systems; the Role of Air and Water Fluxes. Terra Nova. Vol. 16, pp. 344-350.

Pflitsch, A. and Piasecki, J. (2003) Detection of an Airflow System in Niedzwiedzia (Bear) Cave, Kletno, Poland. Journal of Cave and Karst Studies. Vol. 65, pp. 160-173.

Putra, E.B.D., Haryono, E., Nurjani, E. (2017). Cave Carrying Capacity : Lesson Learned from Pindul Cave dan Baru Cave, Gunungsewu Geopark-Indonesia. DMR-CCOP-TNCU Technical Seminar on Biostratigraphy and Karst Morphology of Saturn Aspiring Geopark. pp. 43-49

Russell, M.J. and McLean, V.L. (2008) Management Issues in a Tasmanian Tourist Cave : Potential Microclimate Impacts of Cave Modifications. Journal of Environmental Management. Vol. 87, pp. 474-483.

Sanchez-Moral, S., Soler, V., Canaveras, J.C., Sanz-Rubio, E., Van Grieken, R., Gysels, K. (1999) Inorganic Deterioration Affecting Altamira Cave, N Spain: Quantitative Approach to Wall-Corrosion (Solutional Etching) Processes Induced by Visitors. The Science of Total Environment. Vol. 243, pp. 67-84.

Sebela, S., Prelovsek, M., and Janez, T. (2013) Impact of Peak Period Visits on the Postojna Cave (Slovenia) Microclimate. Theor Applied Climatology. Vol. 111, pp. 51-64.

Sebela, S. And Turk, J. (2014a). Natural and Anthropogenic Influences on the Year-Round Temperature Dynamics of Air and Water in Postjona Show Cave. Tourism Management. Vol. 40, pp. 233-243.

Setiawan, B., Rijanta, R., Baiquni, M. (2017) Sustainable Tourism Development: the Adaptation and Resilience of the Rural Communities in (the Tourist Villages of) Karimunjawa, Central Java. Forum Geografi. Vol. 31(2), pp. 232-245.

Article Level Metrics

Refbacks

  • There are currently no refbacks.