Analysis of Geographically and Temporally Weighted Regression (GTWR) GRDP of the Construction Sector in Java Island

Sugi Haryanto, Muhammad Nur Aidi, Anik Djuraidah



The construction sector is one of the sectors that have strategic value in the national economy. Economic activity in an area is measured using the Gross Regional Domestic Product (GRDP). The development of economic activities in the construction sector can be seen from the GRDP of the construction sector. The Geographically and Temporally Weighted Regression (GTWR) model is a development of the Geographically Weighted Regression (GWR) model taking into account the diversity of locations and times. This study used secondary data, namely the data of GRDP the construction sector as a response variable and four explanatory variables, namely the number of population, local revenue, area, and the number of construction establishments. The purpose of this study is to determine the factors that influence each regency/municipality and each year observing the GRDP of the construction sector in Java with the GTWR model. GTWR model is more effective to describe the value of GRDP the construction sector of regencies/municipalities in Java Island in 2010-2016. This is indicated by the decrease in values of Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD), and the Mean Absolute Percentage Error (MAPE).


construction, GRDP, GRDP the construction sector, GTWR, spatial

Full Text:



Afandi, A.G., and Soesatyo, Y. (2014) The Influence manufacture of the Processing Industry, Trade, Hotels and Restaurants, and Agriculture on the GRDP of Mojokerto Regency [Pengaruh Industri Pengolahan, Perdagangan, hotel, dan Restoran, dan Pertanian terhadap PDRB Kabupaten Mojokerto]. Jurnal Pendidikan Ekonomi. Vol.2, No.3, pp. 1-16.

Anisah, Soedwiwahjon, and Miladan, N. (2017) Analysis of form the regional development in Kartasura district as a rapidly growing strategic area [Analisis Bentuk Perkembangan Wilayah Kecamatan Kartasura Sebagai Kawasan Strategis Cepat Tumbuh]. Region. Vol.12, No.2, pp. 111-118.

BPS-Statistics Indonesia. (2016). Gross Regional Domestic Product of regency/municipality of East Java by business sector 2011-2015 [Produk Domestik Regional Bruto Kabupaten/Kota Jawa Timur menurut Lapangan Usaha 2011-2015]. Surabaya: Statistics-East Java

BPS- Statistics Indonesia. (2017) Construction Statistics 2016 [Statistik Konstruksi 2016]. Jakarta: BPS-Statistics Indonesia.

Brunsdon, C, Fotheringham, A.S., and Charlton, M.E. (1996) Geographical Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis. Vol.28, No.4, pp.281-298.

Conita, Purwaningsih T. 2017. Under-five mortality rate modeling using geographically and temporal weighted regression (GTWR). Editor: -. Proceedings of 1st Ahmad Dahlan International Conference on Mathematics and Mathematics Education; 2017 Oktober 13-14. Yogyakarta, Indonesia. Yogyakarta: Universitas Ahmad Dahlan.

Fotheringham, A.S., Charlton, M.E., and Brunsdon, C. (1996) The geography of parameter space: an investigation of spatial non-stationarity. International Journal of Geographical Information Science, Vol.10, No.5, pp.605–627.

Fotheringham, A.S., Brunsdon, C, and Charlton, M.E. (2002) Geographical Weighted Regression: The Analysis of Spatially Varying Relationship. West Sussex: John Wiley & Sons Ltd.

Fotheringham, A.S., Crespo, R, and Yao, J. (2015). Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, Vol.47, No.4, pp.431-452.

Giyarsih, S.R. (2010) Spatial Patterns of Regional Transformation in the Yogyakarta-Surakarta Corridor [Pola Spasial Transformasi Wilayah di Koridor Yogyakarta-Surakarta]. Forum Geografi. Vol.24, No.1, pp.28-38.

Huang, B., Wu, B. and Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, Vol.24, No. 3, pp.383-401.

Jayadinata, T.J. (1999). Land use arrangement in urban rural planning [Tata Guna Tanah Dalam Perencanaan Pedesaan Perkotaan]. Bandung : Penerbit ITB

Naskah Akademik RUU Jasa Konstruksi. (2015) [internet]: [1 Maret 2018]

Nasution, H.S. (2010). Analysis of Factors Affecting the Growth of Gross Regional Domestic Product in the Fiscal Decentralization Era in Banten Province 2001: 1-2009: 4 [Analisis Faktor - Faktor yang Mempengaruhi Pertumbuhan Produk Domestik Regional Bruto Era Desentralisasi Fiskal di Propinsi Banten Periode 2001:1-2009:4]. Media Ekonomi. Vol.18, No.2, pp.1-12.

Putra, N.B. 2015. Effect of Population and Area on GRDP in Bojonegoro District 2010-2014 [Pengaruh Jumlah Penduduk dan Luas Wilayah terhadap PDRB di Kabupaten Bojonegoro 2010-2014]. [Skripsi]. Malang: Universitas Muhammadiyah Malang.

Safitri, I. and Aliasuddin. (2016) Influence of Population on Economic Growth [Pengaruh Penduduk terhadap Pertumbuhan Ekonomi]. Jurnal Ilmiah Mahasiswa (JIM). Vol.1, No.1, pp.56-65.

Wibowo, S.N.E., Mamuaya, G.E., and Djamaluddin, R. (2018) Land Subsidence Analysis of Reclaimed Land using Time-Lapse Microgravity Anomaly in Manado, Indonesia. Forum Geografi. Vol.32, No.1, pp.53-63.

Article Metrics

Abstract view(s): 441 time(s)
HTML: 314 time(s) PDF: 77 time(s)



1. Modelling of GRDP the Construction Sector in Java Island Using Robust Geographically and Temporally Weighted Regression (RGTWR)
Sugi Haryanto, Muhammad Nur Aidi, Anik Djuraidah
International Journal of Scientific Research in Science, Engineering and Technology  first page: 165  year: 2019  
doi: 10.32628/IJSRSET196141


  • There are currently no refbacks.