Suitable Proportion Sample of Holdout Validation for Spatial Rainfall Interpolation in Surrounding the Makassar Strait

Giarno Giarno, Muhammad Pramono Hadi, Slamet Suprayogi, Sigit Heru Murti

DOI: https://doi.org/10.23917/forgeo.v33i2.8351

Abstract

Spatial rainfall interpolation requires a number of suitable validation samples to maintain accuracy. Generally, the larger the areas which can be predicted, the better the interpolation. In addition, the data used for validation should be separated from the modelling data. Moreover, the number of samples determine optimally proportion the independent sites. The objective of this study is to determine the optimal sample ratio for holdout validation in interpolation methods; the Makassar Strait was chosen as the study location because of its daily rainfall variation. The accuracy of the sample selection is tested using correlation, root mean square error (RMSE), mean absolute error (MAE) and the indicators of contingency tables. The results show that accuracy depends on the ratio of the modelling data. Therefore, the more extensive the data used for interpolation, the better the accuracy. Otherwise, if the rain gauge data is separated according to province, there will be a variation in accuracy in the portion of independent samples. For rainfall interpolation, it is recommended to use a minimum 75% of data sites to maintain accuracy. Comparison between kriging and inverse distance weighting or IDW methods indicates that IDW is better. Moreover, rainfall characteristics affect the accuracy and portion of the independent sample.

Keywords

validation, independent sample, spatial interpolation, rainfall, Makassar Strait

Full Text:

HTML PDF

References

Ahrens B. (2006) Distance in spatial interpolation of daily rain gauge data. Hydrol. Earth Syst. Sci., Vol.10, pp.197–208.

Chen T., Ren L., Yuan F., Yang X., Jiang S., Tang T., Liu Y., Zhao C. & Zhang L. (2017) Comparison of Spatial Interpolation Schemes for Rainfall Data and Application in Hydrological Modeling. Water,Vol. 9, No.342, pp.1-18.

D'Arrigo R. & Wilson R. (2008) Short Communication: El Ni˜no and Indian Ocean influences on Indonesian drought: implications for forecasting rainfall and crop productivity. International Journal of Climatology, Vol.28, pp.611-616.

Eischeid J. K., Pasteris P. A., Diaz H. F., Plantico M. S. & Lott N. J. (2000) Creating a serially complete, national daily time series of temperature and precipitation for the Western United States. J. Appl. Meteorol., Vol.39, pp.1580–1591.

FirdausHum N. N. M. & Talib S. A. (2016) Spatial interpolation of monthly precipitation in selangor, Malaysia-Comparison and evaluation of methods. Journal of Applied and Physical Sciences, Vol.2, No.1, pp.1-9

Giarno, Zadrach L. D. & Mustofa M. A. (2012) Kajian awal musim hujan and awal musim kemarau di Indonesia. Jurnal Meteorologi and Geofisika, Vol.1. pp.1–8.

Giarno, Hadi M. P., Suprayogi S. & Murti S. H. (2018), Distribution of Accuracy of TRMM Daily Rainfall in Makassar Strait. Forum Geografi, Vol.32, No.1, pp.38-52.

Goovaerts P. (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., Vol.228, No.1, pp.113-129.

Hashiguchi H., Tabata Y., Yamamoto M. K., Marzuki, Mori S., Yamanaka M. D., Syamsudin F. & Manik T. (2013) Observational Study on Diurnal Precipitation Cycle over Indonesian Maritime Continent. Journal of Disaster Research, Vol.8, pp.1–9.

Hidayat R. and Kizu S. (2010) Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer. International Journal of Climatology, Vol.30, pp.1816-1825.

Hu K., Li B., Lu Y. & Zhang F. (2004) Comparison of various spatial interpolation methods for non-stationary regional soil mercury content, Environmental Science. Vol.25, pp.132–137.

Isaaks E.H. & Srivastava R.M. (1990) An introduction to applied geostatistics. New York, USA: Oxford University Press.

Javari M. (2017) Comparison of interpolation methods for modeling spatial variations of Precipitation in Iran. International Journal of Environmental and Science Education, Vol.12, No.5, pp.1037-1054.

Jia S. F., Zhu W. B., Lu A. F. and Yan T. T., (2011) A statistical spatial downscaling algorithm of trmm precipitation based on NDVI and DEM in the qaidam basin of china. Remote Sensing and Environment, Vol.115, pp.3069–3079.

Jolliffe I. T. and Stephenson D. B. (2013) Forecast Verification: A Practitioner's Guide in Atmospheric Science. 2nd Edition, Wiley.

Karydas, C. G., Gitas, I. Z., Koutsogiannaki, E., Simantiris, N. L. and Silleos, G. N. (2009) Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. EARSeL eProceedings 8.

Kebloutia M., Ouerdachia L. and Boutaghane H. (2012) Spatial Interpolation of Annual Precipitation in Annaba–Algeria–Comparison and Evaluation of Methods. Energy Procedia, Vol.18, pp.468 – 475.

Kyriakidis P.C., Kim J. and Miller N.L. (2001) Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteorol.,Vol.40, No.11, pp.1855-1877.

Langella G., Basile A., Bonfante A. and Terribile F. (2010) High-Resolution space-time rainfall analysis using integrated ann inference systems. Journal of Hydrology, Vol.387, No.3-4, pp. 328–342.

Lee H. S. (2015) General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity. Water, Vol.7. pp.1750-1768.

Li M. & Shao Q. X. (2010) An improved statistical approach to merge satellite rainfall estimates and raingauge data. Journal of Hydrology, Vol.385, No.1-4, pp.51–64.

Ly S., Charles C. and Degré A. (2013) Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale. A review. Biotechnol. Agron. Soc. Environ. Vol.17, No.2, pp.392-406.

Madden R. A., and Julian P. R. (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of the Atmospheric Sciences, Vol.29, No.6, pp.1109–1123.

Martono M. & Wardoyo T. (2017) Impacts of El Niño 2015 and the Indian Ocean Dipole 2016 on Rainfall in the Pameungpeuk and Cilacap Regions. Forum Geografi, Vol.31, No.2, pp.184–195.

Tewolde M. G., Beza T. A., Costa A. C. and Painho M. (2010) Comparison of Different Interpolation Techniques to Map Temperature in the Southern Region of Eritrea, 13th AGILE International Conference on Geographic Information Science.

Otieno H., Yang J., Liu W. and Han D. (2014) Influence of rain gauge density on interpolation method selection. J Hydrol Eng, Vol.19, No.11, pp.1-8.

Peatman S. C., Matthews A. J. and Stevens D. P. (2014) Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation, Quarterly Journal of the Royal Meteorological Society. Vol.140, No.680,pp. 814–825.

Peatman S. C., Matthews A. J. and Stevens D. P. (2015) Propagation of the Madden–Julian Oscillation and scale interaction with the diurnal cycle in a high-resolution GCM. Climate Dynamics. Vol.45, No.9, pp.2901–2918.

Qian J. H. (2007) Why precipitation is mostly concentrated over islands in the maritime continent. Journal of The Atmospherics Sciences, Vol.65, pp.1428–1441.

Renggono F. (2011) Pola sebaran hujan di DAS Larona. Jurnal Sains & Teknologi Modifikasi Cuaca, Vol.12, pp.17–24.

Tabios G.Q. and Salas J.D. (1985) A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour. Bull., Vol.21, pp.265-380.

Velasco F. C.A., Torres S. D., Cassiraga E.F. and Hernandez G. J. J. (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv. Water Resour., Vol.32, No.7, pp.986-1002.

Vincent C. L. & Lane T. P. (2016) Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian oscillation event through the Maritime Continent. Monthly Weather Review, Vol.144, No.5, pp.1983–2005.

Wagner P. D., Fiener P., Wilken F., Kumar S. and Schneider K. (2012) Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions, Journal of Hydrology. Vol.464–465, pp.388–400

Wang S., Huang G. H., Lin Q. G., Li Z., Zhang H. and Fan Y. R. (2014) Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada, Int. J. Climatol. Vol.34, pp.3745–3751.

Weber D. D. and Englund E. J. (1994) Evaluation and comparison of spatial interpolators II. Math. Geol., Vol.26, pp.589–603.

Weng Q. (2002) Quantifying uncertainty of digital elevation models derived from topographic maps. In: Richardson D, van Oosterom P (eds) Advances in Spatial Data Handling, Springer-Verlag, New York, pp.403–418.

Weng Q. (2006) An evaluation of spatial interpolation accuracy of elevation data. In Progress in Spatial Data Handling, Riedl A, Kainz W, Elmes GA (eds), Springer-Verlag, Berlin, pp.805–824.

Wijemannage A. L. K., Ranagalage M. and Perera E. N. C. (2016) Comparison of spatial interpolation methods for rainfall data over Sri Lanka, ACRS Proceedings.

Xu W., Zou Y., Zhang G. and Linderman M. (2015) A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China, Int. J. Climatol. Vol.35, pp.2898–2907

Yang X., Xie X., Liu D. L., Ji F. and Wang L. (2015) Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region. Advances in Meteorology, http://dx.doi.org/10.1155/2015/563629.

Article Metrics

Abstract view(s): 239 time(s)
HTML: 249 time(s) PDF: 38 time(s)

Refbacks

  • There are currently no refbacks.