SITOTOKSISITAS NON DENTAL GLASS FIBER REINFORCED COMPOSITE TERHADAP SEL FIBROBLAS METODE METHYL TETRAZOLIUM TEST

Dendy Murdiyanto

Abstract

Perawatan di kedokteran gigi mulai menggunakan material fiber reinforced composite (FRC) sebagai bahan penyusun alat-alat tertentu seperti gigi tiruan cekat, restorasi onlay,  splinting gigi goyah, pasak gigi dan space maintainer. Penyusun FRC terdiri dari fiber dengan jenis terbanyak glass fiber dan matriks berupa dental composite. Non dental glass fiber merupakan jenis glass fiber yang digunakan pada pembuatan gypsum, patung dan alat-alat otomotif yang mudah dijumpai di pasaran dengan harga terjangkau. Tujuan penelitian ini adalah untuk mengetahui potensi sitotoksisitas non dental glass fiber reinforced composite terhadap sel fibroblas yang mati.

Penelitian ini menggunakan FRC yang diperkuat oleh non dental glass fiber yang telah dianalisa komposisinya dengan scanning electron microscope – energy dispersive x-ray (SEM-EDX). Uji sitotoksisitas dilakukan dengan metode methyl tetrazolium test (MTT) menggunakan sel Vero terhadap air hasil rendaman FRC selama 1, 4 dan 7 hari masing-masing 6 pengulangan  sampel tiap kelompok. Jumlah sel yang mati menunjukkan tingkat sitotoksisitas dan kemudian dianalisa dengan uji Anava satu jalur(α = 0,05).

Hasil penelitian menunjukkan rata-rata kematian sel tertinggi yaitu 8,50 ± 0,34 % pada lama perendaman 4 dan 7 hari, sedangkan rata-rata kematian sel terendah yaitu 8,49 ± 0,35 % pada lama perendaman 1 hari. Berdasarkan pedoman dari Sjögren bahan tidak bersifat sitotoksis jika kematian sel masih dibawah 10%. Uji Anava satu jalur diperoleh p>0,05 pada lama perendaman 1, 4 dan 7 hari. Kesimpulan hasil penelitian yaitu tidak terdapat perbedaan jumlah sel fibroblas yang mati pada lama perendaman 1, 4 dan 7 hari. Non dental glass fiber reinforced composite tidak bersifat sitotoksis terhadap sel fibroblas.

Keywords

glass fiber; fiber reinforced composite; sitotoksisitas

Full Text:

PDF

References

Bunsell A.R. dan Renard J., Fundamentals of Fibre Reinforced Composite Materials, Institute of Physics Publishing, Bristol, 2005, hal. 23-25.

Mohan S., Gurtu A., Singhal A., dan Guha C., Fibre Reinforced Composite – A Rivew and Case Report, J. Dent. Sci. Oral Rehab., 2012, 5 : 45-48.

Garoushi S., Mangoush E., Vallittu P., dan Lassila L., Short Fiber Reinforced Composite: a New Alternative for Direct Onlay Restorations, Open Dent. J., 2013 , 7 : 181-185.

Tuloglu N., Bayrak S., dan Tunc E.S., Different Clinical Applications of Bondable Reinforcement Ribbond in Pediatric Dentistry, Eur. J. Dent., 2009, 3 : 329-334.

Duymus Z.Y., Karaalioglu F.O., dan Suleyman F., Flexural Strength of Provisional Crown and Fixed Partial Denture Resins both with and without Reinforced Fiber, J. Mater. Sci. Nanotechnol., 2014, 1 (3): 302.

Mallick P.K., Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed., CRC Press, Taylor & Francis Group, Boca Raton, FL, 2008, hal 19-63.

ISO 10993-5, Biological Evaluation of Medical Devices - Part 5, Test For In Vitro Cytotoxicity, 2009, hal. 30-34.

O'Brien W.J., Dental Materials and Their Selection, 3rd ed, Quintessence Publishing Co, Inc, Canada, 2002, hal. 12.

Portner, R., Animal Cell Biotechnology: Methods and Protocols, 2nd ed., Humana Press Inc., New Jersey, 2007, hal. 212-214.

Freimoser, F.M., Jakob, C.A., Aebi, M., dan Tuor, U., The MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] Assay Is a Fast and Reliable Method for Colorimetric Determination of Fungal Cell Densities, App Environmen Microbiol, 1999, 65(8): 3727-3729.

Kuroda, S., Yokoyama, D., Shinya, A., Gomi, H., dan Shinya, A., Measuring The Effects of Water Immertion Conditions on The Durability of Fiber-Reinforced Hybrid Composite Resin Using Static and Dynamic Tests. Dent. Mat. J., 2012, 31(3) : 449-457.

Raszewski, Z., dan Nowakowska, D., Mechanical Properties of Hot Curing Acrylic Resin after Reinforced with Different Kinds Of Fibers, Int. J. Biomedic. Mat. Res., 2013, 1(1) : 9-13.

Powers J.M. dan Sakaguchi R.L., Craig’s Restorative Dental Material, 12th ed., Mosby Elsevier, St. Louis, 2006, hal. 104.

Örtengren U., Wellendorf H., Karlsson S., dan Ruyter IE, Water Sorption and Solubility of Dental Composites and Identification of Monomer Released in Aquaous Environment, J. Oral Rehab., 2001, 28:1106-1115.

ISO 4049, Dentistry – Polymer-Based Filling, Restorative and Luting Materials, 2000, hal 17-20.

Sjögren G., Sletten G., dan Dahl J.E., Cytotoxicity of Dental Alloys, Metals, and Ceramics Assessed by Millipore Filter, Agar Overlay, and MTT Test, J. Prosthet. Dent., 2000, 84(2): 229-36.

Andrade A.L.,Marco R.M., Maia T., Lopes M.T.P., Salas C.E. dan Domingues,Z.R., In Vitro Bioactivity And Cytotoxicity Of Chemically Treated Glass Fibers, 2004, Mat. Res. , 2004,7(4) : 635-638.

Curtis A.R., Shortall A.C., Marquis P.M., dan Palin W.M., Water Uptake and Strength Characteristics of A Nanofilled Resin-Based Composite, J. Dent., 2008, 36(3): 186–93.

Wagner S., Münzer S., Behrens P., Scheper T., Bahnemann D., dan Kasper C., Cytotoxicity of Titanium and Silicon Dioxide Nanoparticles, Journal of Physics, 2009, 12: 1-8.

Kostroyz E.L., Utter C.J., Wang Y., Dusevic V. and Spencer P., Cytotoxicity of Dental Nanocomposite Particles, NSTI-Nanotech, 2007, 2:647-650.

Noort R.V., Introduction to Dental Materials, 3rd ed., Mosby Elsevier, St. Louis, 2007, hal. 63.

Zhang M. dan Matinlinna J.P., The Effect of Resin Matrix Composition on Mechanical Properties of E-glass Fibre-Reinforced Composite for Dental Use, J. Adhesion Sci. and Tech., 2011, 19(25): 2687-2701.

Article Level Metrics

Refbacks

  • There are currently no refbacks.