Energy-Efficient Flow Shop Scheduling Using Hybrid Grasshopper Algorithm Optimization

Dana Marsetiya Utama(1*), Teguh Baroto(2), Dian Setiya Widodo(3),

(1) (SINTA ID: 5991174), Universitas Muhammadiyah Malang
(2) 
(3) 
(*) Corresponding Author
DOI: https://doi.org/10.23917/jiti.v19i1.10079

Abstract

Manufacturing companies have a significant impact on environmental damage, and energy consumption in manufacturing companies is a widespread issue because the energy used is derived from fossil fuels. This research aims to minimize energy consumption using develop Hybrid Grasshopper Algorithm Optimization (HGAO). The focus of the issue in this article is the Permutation Flow Shop Scheduling Problem (PFSSP). A case study was conducted in offset printing firms. The results showed that the HGAO algorithm is capable of reducing energy consumption in offset printing firms. The higher the population of search agents and iterations produces less energy consumption. The HGAO algorithm is also compared with the genetic algorithm (GA). The results show that HGAO is more efficient in reducing energy consumption than GA.

Keywords

Scheduling; flow shop; energy consumption; Hybrid Grasshopper Algorithm Optimization.

Full Text:

PDF

References

Brundage, M. P., Chang, Q., Li, Y., Xiao, G., & Arinez, J. (2013). Energy efficiency management of an integrated serial production line and HVAC system. IEEE Transactions on Automation Science and Engineering, 11(3), 789-797.

Chen, J.-f., Wang, L., & Peng, Z.-p. (2019). A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm and Evolutionary Computation, 50, 100557. doi: https://doi.org/10.1016/j.swevo.2019.100557

Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi: https://doi.org/10.1016/j.rcim.2013.04.001

Elias, R., Yuan, M., Wahab, M., & Patel, N. (2019). Quantifying saving and carbon emissions reduction by upgrading residential furnaces in Canada. Journal of Cleaner Production, 211, 1453-1462.

Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129. doi: https://doi.org/10.1287/moor.1.2.117

Gong, G., Chiong, R., Deng, Q., Han, W., Zhang, L., Lin, W., & Li, K. (2020). Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems with Applications, 141, 112902.

Grobler, J., Engelbrecht, A. P., Kok, S., & Yadavalli, S. (2010). Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time. Annals of Operations Research, 180(1), 165-196.

Jiang, T., Zhang, C., Zhu, H., Gu, J., & Deng, G. (2018). Energy-efficient scheduling for a job shop using an improved whale optimization algorithm. Mathematics, 6(11), 220.

Lei, D., Gao, L., & Zheng, Y. (2018). A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop. IEEE Transactions on Engineering Management, 65(2), 330-340. doi: https://doi.org/10.1109/TEM.2017.2774281

Li, S., Liu, F., & Zhou, X. (2018). Multi-objective energy-saving scheduling for a permutation flow line. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(5), 879-888.

Li, X., & Yin, M. (2013). An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure. Advances in Engineering Software, 55, 10-31. doi: https://doi.org/10.1016/j.advengsoft.2012.09.003

Liu, X., Wang, L., Kong, L., Li, F., & Li, J. (2019). A Hybrid Genetic Algorithm for Minimizing Energy Consumption in Flow Shops Considering Ultra-low Idle State. Procedia CIRP, 80, 192-196. doi: https://doi.org/10.1016/j.procir.2018.12.013

Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi: https://doi.org/10.1016/j.ijpe.2016.06.019

Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi: https://doi.org/10.1016/j.jclepro.2017.01.011

Maulana, S. K. D. B., Utama, D. M., Asrofi, M. S., Ningrum, I. S., Alba, N., Ahfa, H. A., & Zein, T. A. (2019). The Capacitated Sustainable EOQ Models: Models Considering Tax Emissions. Jurnal Teknik Industri, 21(1), 12-21.

Öztop, H., Tasgetiren, M. F., Eliiyi, D. T., Pan, Q.-K., & Kandiller, L. (2020). An energy-efficient permutation flowshop scheduling problem. Expert Systems with Applications, 150, 113279.

Pan, Q.-K., Gao, L., Li, X.-Y., & Gao, K.-Z. (2017). Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times. Applied Mathematics and Computation, 303, 89-112.

Piroozfard, H., Wong, K. Y., & Wong, W. P. (2018). Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm. Resources, Conservation and Recycling, 128, 267-283.

Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47.

Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., & Ortega-Mier, M. (2014). Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 67, 197-207.

Sugioko, A. (2013). Perbandingan Algoritma Bee Colony dengan Algoritma Bee Colony Tabu List dalam Penjadwalan Flow Shop. Jurnal Metris, 14(2), 113-120.

Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in Industry, 81, 82-95. doi: https://doi.org/10.1016/j.compind.2015.10.001

Tian, Y., Xiong, S., Ma, X., & Ji, J. (2018). Structural path decomposition of carbon emission: A study of China's manufacturing industry. Journal of Cleaner Production, 193, 563-574.

Utama, D., Widodo, D., Wicaksono, W., & Ardiansyah, L. (2019). A new hybrid metaheuristics algorithm for minimizing energy consumption in the flow shop scheduling problem. International Journal of Technology, 10, 320-331.

Utama, D. M. (2018a). Algoritma LPT-Branch and Bound Pada Penjadwalan Flexible Flowshop untuk Meminimasi Makespan. PROZIMA (Productivity, Optimization and Manufacturing System Engineering), 2(1), 20-26. doi: http://ojs.umsida.ac.id/index.php/prozima/article/view/1527

Utama, D. M. (2018b). Pengembangan Algoritma NEH Dan CDS Untuk Meminimasi Consumption Energy Pada Penjadwalan Flow Shop. Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 4, 47-54. doi: http://research-report.umm.ac.id/index.php/sentra/article/view/2309.

Utama, D. M. (2019a). An Effective Hybrid Sine Cosine Algorithm to Minimize Carbon Emission on Flow-shop Scheduling Sequence Dependent Setup. 2019, 20(1), 62-72. doi: http://dx.doi.org/10.22219/JTIUMM.Vol20.No1.62-72

Utama, D. M. (2019b). Salp Swarm Algorithm Untuk Meminimasi Konsumsi Energi Pada Penjadwalan Flow Shop Dengan Set Up Dan Removal Time. Paper presented at the Prosiding SENTRA (Seminar Teknologi dan Rekayasa).

Utama, D. M., Ardiansyah, L. R., & Garside, A. K. (2019). Penjadwalan Flow Shop untuk Meminimasi Total Tardiness Menggunakan Algoritma Cross Entropy–Algoritma Genetika. Jurnal Optimasi Sistem Industri, 18(2), 133-141. doi: https://doi.org/10.25077/josi.v18.n2.p133-141.2019

Utama, D. M., Baroto, T., Maharani, D., Jannah, F. R., & Octaria, R. A. (2019). Algoritma ant-lion optimizer untuk meminimasi emisi karbon pada penjadwalan flow shop dependent sequence set-up. Jurnal Litbang Industri, 9(1), 69-78.

Utama, D. M., Garside, A. K., & Wicaksono, W. (2019). Pengembangan algoritma Hybrid Flow shop Three-Stage Dengan Mempertimbangkan Waktu Setup. Jurnal Ilmiah Teknik Industri, 18(1), 72-78. doi: http://dx.doi.org/10.23917/jiti.v18i1.7683

Utama, D. M., Widodo, D. S., Ibrahim, M. F., & Dewi, S. K. (2020). An effective hybrid ant lion algorithm to minimize mean tardiness on permutation flow shop scheduling problem. International Journal of Advances in Intelligent Informatics, 6(1), 23-35.

Widodo, D. S., Santoso, P. B., & Siswanto, E. (2014). Pendekatan Algoritma Cross Entropy-Genetic Algorithm Untuk Menurunkan Makespan Pada Penjadwalan Flow Shop. Journal of Engineering and Management in Industrial System, 2(1).

Widodo, D. S., & Utama, D. M. (2019). Analisis Model Sustainable Economic Order Quantity Dengan Mempertimbangkan Emisi Karbon Dan Batasan Kapasitas Gudang Untuk Menekan Total Biaya Persediaan. TEKNIK, 40(3), 169-175.

Wu, X., & Che, A. (2019). A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega, 82, 155-165. doi: https://doi.org/10.1016/j.omega.2018.01.001

Zanoni, S., Bettoni, L., & Glock, C. H. (2014). Energy implications in a two-stage production system with controllable production rates. International Journal of Production Economics, 149, 164-171.

Zhang, H., Zhao, F., Fang, K., & Sutherland, J. W. (2014). Energy-conscious flow shop scheduling under time-of-use electricity tariffs. CIRP Annals, 63(1), 37-40. doi: https://doi.org/10.1016/j.cirp.2014.03.011

Article Metrics

Abstract view(s): 1069 time(s)
PDF: 557 time(s)

Refbacks

  • There are currently no refbacks.