Perbandingan Performansi Teknik Klasifikasi Breakdown Mesin pada Proses Produksi Pembuatan Battery Mobil

Iveline Anne Marie, Lukmanul Hakim, Dedy Sugiarto, Winnie Septiani

DOI: https://doi.org/10.23917/jiti.v18i1.7232

Abstract

Data mining is useful in finding interesting patterns of hidden information in a database with specified algorithms. Management of uncertainty in the automotive industry supply chain, with case data at PT QQQ that produce car batteries, classification techniques are used to manage uncertainty in the case of engine breakdown. Based on the utilization of classification techniques, performance comparison analysis was carried out from several methods, namely Decision Tree, Bagging, Boosting and Random Forest. The research data is divided into testing data (75%) and training data (25%). This study uses Software R for analysis needs. The need for testing the goodness of the model uses package (caret) help to see the value of accuracy, sensitivity and specificity. The analysis shows that the Random Forest and Bagging method is superior compared to the Decision Tree and Boosting methods based on accuracy criteria, while the sensitivity criteria, Bagging and Boosting methods are superior to Random Forest and DecisionTree. The lowest sensitivity value is owned by the Decision Tree Method, which indicates that the ability of the method is weak in predicting very few classes. 

Keywords

classification technique; accuracy; sensitivity; specificity

Full Text:

PDF

References

Ali, J.; Khan, R.; Ahmad, N.; Magsood, I. (2012). “Random forests and decision trees”. International Journal of Computer Science Issue, 9 (3), 272-278.

Breiman, L. (1996). “Bagging predictors”. Machine Learning. 24, 123-140.

Breiman, L. (2001). “Random Forests”. Machine Learning, 45 (1), 5–32.

Córdon, O.; Quirin, A.; Sanchez, L. (2008). “A first study on bagging fuzzy rule-based classification systems with multicriteria genetic selection of the component classifiers”. International Workshop on Genetic and Evolving Fuzzy Systems, 11-16.

Elrahman, S.M.; Abraham, A. (2013). “A review of class imbalance problem”. Journal of Network and Innovative Computing, 1, 332-340.

Fernanda, J.W.; Otok, B.W. (2012). “Boosting neural network dan boosting cart pada klasifikasi diabetes militus tipe II”. Jurnal Matematika, 2 (2).

Hakim, L.; Sartono, B.; Saefuddin, A. (2017). “Bagging based ensemble classification method on imbalance datasets”. IJCSN - International Journal of Computer Science and Network, 6 (6).

Hastie, T.J.; Tibshirani, R.J.; Friedman, J.H. (2008). The Elements of Statistical Learning: Data-mining, Inference and Prediction. Second edition. New York: Springer-Verlag

Ho, W.; Zheng, T.; Yildiz, H.; Talluri, S. (2015). “Supply chain risk management: A literature review”. International Journal of Production Research, 53 (16), 5031-5069.

Marie, I.A.; Sari, D.K.; Astuti, P.; Teorema, M. (2017). “Design of disturbances control model at automotive company”. IOP Conf. Series: Materials Science and Engineering, 277 , #012020

Marie I.A.; Ariwibowo, A.B.; Saraswati; Witonohadi, A. (2016). Determination of Failure Risk for Transformer System Based on Classification Technique. Proceeding of 9th International Seminar on Industrial Engineering and Management.

Lowe, B.; Kulkarni, A. (2015). “Multispectral image analysis using random forest”. International Journal on Soft Computing (IJSC). 6 (1), 1-14.

Petre, P. (2013). “Data mining solutions for the business environment”. Database Systems Journal, 4 (4), 21-29.

Saifuddin, A.; Wahono, R.S. (2015). ”Penerapan teknik ensemble untuk menangani ketidakseimbangan kelas pada prediksi cacat software”. Journal of Software Engineering. 1 (1), 28-37.

Sartono, B.; Syafitri. (2010). “Metode pohon gabungan: solusi pilihan untuk mengatasi kelemahan pohon regresi dan klasifikasi tunggal”. Forum Statistika dan Komputasi, 15 (1), 1-7.

Singh, A.; Kumar, A. (2016). “Application of bagging and boosting for all the classification algorithms”. International Journal of Pharmacy and Technology, 8 (3).

Sulastri, H.; Gufroni, A.I. (2017). “Penerapan data mining dalam pengelompokan penderita thalassaemia”. Jurnal Nasional Teknologi dan Sistem Informasi, 3 (2), 299-305.

Tan, P.-N.; Steinbach, M.; Kumar, V. (2006). Introduction to Data Mining. USA: Pearson Education, Inc.

Article Metrics

Abstract view(s): 392 time(s)
PDF: 487 time(s)

Refbacks

  • There are currently no refbacks.