Combination of K-Means and Simple Additive Weighting in Deciding Locations and Strategies of University Marketing

Muhamad Ali Kasri, Handaru Jati

DOI: https://doi.org/10.23917/khif.v6i2.11281

Abstract

Every year UNIMUDA Sorong welcomes new students and keeps promoting to attract more. The process generates a growing number of student data. On the other hand, the promotional strategy to attract new students faces obstacles such as generalization among locations, ineffective time, limited personnel to carry out promotions, and cost inefficiency. This study examines the new student data and university marketing strategies to optimize time, effort, and cost. It uses the K-Means method for data grouping and the Simple Additive Weighting (SAW) for ranking the results of data grouping. The result of this research suggests that the location of promotion may be determined from the clustering process using the K-Means method. The silhouette coefficient test invalidates the data clustering, and the SAW method helps the ranking process to obtain a sequence of promotion locations. The ranking results reflect the predetermined decision table that directs promotion location selection according to the promotion strategy. The combination of the two methods helps to decide the location and marketing strategy to optimize time, effort, and cost. The results of this study may be used as a comparative reference for the management to decide the right promotion strategy based on the locations and student background.

Keywords

k-means, simple additive weighting, promotion, new students

Full Text:

Uncorrected PDF

References

R. Budiman and Rudianto, “Penerapan Data Mining Untuk Menentukan Lokasi Promosi Penerimaan Mahasiswa Baru Pada Universitas Banten Jaya (Metode K-Means Clustering),” ProTekInfo(Pengembangan Ris. dan Obs. Tek. Inform., vol. 6, no. 1, p. 6, 2019, doi: 10.30656/protekinfo.v6i1.1691.

E. Asril, F. Wiza, and Y. Yunefri, “Analisis Data Lulusan dengan Data Mining untuk Mendukung Strategi Promosi Universitas Lancang Kuning,” J. Teknol. Inf. Komun. Digit. Zo., vol. 6, no. 2, pp. 24–32, 2015.

S. Sagala, Manajemen Strategi dalam Peningkatan Mutu Pendidikan (Pembuka Ruang Kreatifitas, Inovasi, dan Pemberdayaan Potensi Sekolah dalam Sistem Otonomi Sekolah). Bandung: Alfabeta, 2007.

S. Abadi et al., “Application model of k-means clustering: Insights into promotion strategy of vocational high school,” Int. J. Eng. Technol., vol. 7, no. 2.27 Special Issue 27, pp. 182–187, 2018, doi: 10.14419/ijet.v7i2.11491.

J. O. Ong, “Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university,” J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, pp. 10–20, 2013.

G. A. Sandag, E. Y. Putra, R. L. Wurangian, and N. B. Tulangow, “Analysis of Strategy for Targeted New Student Using K-Means Algorithm,” 2019 1st Int. Conf. Cybern. Intell. Syst. ICORIS 2019, vol. 1, no. August, pp. 94–99, 2019, doi: 10.1109/ICORIS.2019.8874903.

M. Rusli, S. Arifin, and A. Trisnadoli, “Pengembangan Sistem Pendukung Keputusan untuk Penentuan Lokasi Promosi Penerimaan Mahasiswa Baru,” J. Komput. Terap., vol. 3, no. 1, pp. 11–18, 2017.

F. Febriadi, A. Ananda, and W. Nengsih, “Sistem Pendukung Keputusan Penentu Daerah Potensial Promosi Perguruan Tinggi Menggunakan Metode Fuzzy AHP (Studi Kasus: Politeknik Caltex Riau),” J. aksara Komput. Terap., vol. 6, no. no 2, 2017.

S. Sugiarti, D. K. Nahulae, T. E. Panggabean, and M. Sianturi, “Sistem Pendukung Keputusan Penentuan Kebijakan Strategi Promosi Kampus Dengan Metode Weighted Aggregated Sum Product Assesment (WASPAS),” JURIKOM (Jurnal Ris. Komputer), vol. 5, no. 2, pp. 103–108, 2018.

S. H. Zanakis, A. Solomon, N. Wishart, and S. Dublish, “Multi-attribute decision making: A simulation comparison of select methods,” Eur. J. Oper. Res., vol. 107, no. 3, pp. 507–529, 1998, doi: 10.1016/S0377-2217(97)00147-1.

Sunarti, “Perbandingan Metode TOPSIS dan SAW Untuk Pemilihan Rumah Tinggal,” J. Inf. Syst., vol. 3, no. 1, pp. 69–79, 2018.

A. P. Wicaksono, A. Syukur, and Suprapedi, “Komparasi Simple Additive Weighting Dan Analytical Hierarchy Process Terhadap Penentuan Pengelompokan Desa,” J. Teknol. Inf., vol. 15, pp. 28–44, 2019.

Muh. Erdiansyah T, B. Pramono, J. Nangi, J. T. Informatika, F. Teknik, and U. H. Oleo, “Perbandingan Metode Fuzzy Analytical Hierarchy Process Dengan Metode Fuzzy Simple Additive Weighting Dalam Menentukan Status Karyawan,” SemanTIK, vol. 5, no. 2, pp. 231–236, 2019.

D. Korsemov and D. Borissova, “AMO - Advanced Modeling and Optimization, Volume 19, Number 1,” AMO – Adv. Model. Optim., vol. 20, no. 1, pp. 101–112, 2018.

K. Arai and A. Ridho Barakbah, “Hierarchical K-means: an algorithm for centroids initialization for K-means,” Rep. Fac. Sci. Engrg. Reports Fac. Sci. Eng., vol. 36, no. 1, pp. 25–31, 2007.

A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010, doi: 10.1016/j.patrec.2009.09.011.

T. Velmurugan and T. Santhanam, “A comparative analysis between K-Medoids and fuzzy C-Means clustering algorithms for statistically distributed data points,” J. Theor. Appl. Inf. Technol., vol. 27, no. 1, pp. 19–30, 2011.

X. Wu et al., Top 10 algorithms in data mining, vol. 14, no. 1. 2008.

D. J. T. et Al, “Peraturan Presiden Republik Indonesia Nomor 65 Tahun 2011 Tentang Percepatan Pembangunan Provinsi Papua Dan Provinsi Papua Barat Dengan.” 2011.

BPPD, “Laporan Akuntabilitas Kinerja Instansi Pemerintah,” 2007.

Muhammad Azkaenza, W. J. Pratama, H. Peranginangin, and M. S. Nova, “Laporan Perekonomian Provinsi Papua,” vol. 5, p. 98, 2019.

S. Nawrin, M. Rahatur, and S. Akhter, “Exploreing K-Means with Internal Validity Indexes for Data Clustering in Traffic Management System,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 3, 2017, doi: 10.14569/ijacsa.2017.080337.

D. A. Kandeil, A. A. Saad, and S. M. Youssef, “A two-phase clustering analysis for B2B customer segmentation,” Proc. - 2014 Int. Conf. Intell. Netw. Collab. Syst. IEEE INCoS 2014, pp. 221–228, 2014, doi: 10.1109/INCoS.2014.49.

P. Rousseeuw, “Rousseeuw et al 1986.pdf,” Journal of Computational and Applied Mathematics. pp. 53–65, 1986.

J. E. Gentle, L. Kaufman, and P. J. Rousseuw, “Finding Groups in Data: An Introduction to Cluster Analysis.,” Biometrics, vol. 47, no. 2, p. 788, 1991, doi: 10.2307/2532178.

A. Pranolo and S. M. Widyastuti, “Simple additive weighting method on intelligent agent for urban forest health monitoring,” Proc. - 2014 Int. Conf. Comput. Control. Informatics Its Appl. “New Challenges Oppor. Big Data”, IC3INA 2014, pp. 132–135, 2014, doi: 10.1109/IC3INA.2014.7042614.

J. Kittur et al., “Evaluating Optimal Generation using different Multi– Criteria Decision Making Methods,” Int. Conf. Circuit, Power Comput. Technol. [ICCPCT] Eval., 2015.

H. G. Shakouri, M. Nabaee, and S. Aliakbarisani, “A quantitative discussion on the assessment of power supply technologies: DEA (data envelopment analysis) and SAW (simple additive weighting) as complementary methods for the ‘Grammar,’” Energy, vol. 64, pp. 640–647, 2014, doi: 10.1016/j.energy.2013.10.022.

R. E. Setyani and R. Saputra, “Flood-prone Areas Mapping at Semarang City by Using Simple Additive Weighting Method,” Procedia - Soc. Behav. Sci., vol. 227, no. November 2015, pp. 378–386, 2016, doi: 10.1016/j.sbspro.2016.06.089.

A. Faizin and E. Mulyanto, “Penerapan Metode Simple Additive Weighting ( SAW ) Untuk Seleksi Tenaga Kerja Baru Bagian Produksi ( Studi Kasus Pada PT . Jesi Jason Surja Wibowo ),” Univ. Dian Nuswantoro Semarang, pp. 1–9, 2015.

Article Metrics

Abstract view(s): 36 time(s)
Uncorrected PDF: 21 time(s)

Refbacks

  • There are currently no refbacks.