Drought Analysis and Forecast Using Landsat-8 Sattelite Imagery, Standardized Precipitation Index and Time Series

Musa Marsel Maipauw, Eko Sediyono, Sri Yulianto Joko Prasetyo

DOI: https://doi.org/10.23917/khif.v6i1.8863

Abstract

A drought is a phenomenon of shortages in water supply in an area for a long time. Drought usually occurs in areas that have little rain for a long time or in areas with low precipitation. Drought have negative impacts on many sectors such as agriculture, plantations, water resources and environment. This paper describes the results of a research that aims to analyze data to get the level of drought during four yearly periods, and predict the likelihood of drought to occur in the future. The level of drought was analyzed using the Inverse Distance Weighted (IDW) method and the Standardized Precipitation Index (SPI). Least square time series was utilized to forecast the level of drought in the near future. Data consists of drought data collected from electronic news, rainfall data from BMKG, and anual Landsat-8 satellite imagery. All data are for Western Southeast Mallucas in the range of 2015-2018. Analysis using IDW and SPI methods produce similar interpretation for year 2015, i.e. mild dryness, and fro year 2018, i.e. no drought. However, the two methods show discrepancy in analysis of data for 2016 and 2017. The use of least square time series to forecast drought in 2019 gives SPI value of 0.03 which intepretes as normal weather (no drought) that is consistent with the result of field observation.

Keywords

drought; inverse distance weghted; standard precipitation index; least square; time series

Full Text:

PDF

References

R. D’Arrigo and R. Wilson, “El Nino and Indian Ocean influences on Indonesian drought: implications for forecasting rainfall and crop productivity,” Int. J. Climatol. A J. R. Meteorol. Soc., vol. 28, no. 5, pp. 611–616, 2008.

I. G. Hendrawan, K. Asai, A. Triwahyuni, and D. V. Lestari, “The interanual rainfall variability in Indonesia corresponding to El Niño Southern oscillation and Indian Ocean Dipole,” Acta Oceanol. Sin., vol. 38, no. 7, pp. 57–66, 2019.

L. Arumingtyas, “Jawa dan Nusa Tenggara Langganan Bencana Kekeringan, Mengapa?,” Mongabay, 2018.

A. Sulistyo, “Kombinasi Teknologi Aplikasi GPS Mobile dan Pemetaan SIG dalam Sistem Pemantauan Demam Berdarah (DBD),” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 5, no. 1, pp. 6–14, 2019.

A. Syahrial, A. Azmeri, and E. Meilianda, “Analisis Kekeringan Menggunakan Metode Theory of Run di DAS Krueng Aceh,” J. Civ. Eng., vol. 24, no. 2, pp. 167–172, 2017.

L. Wang, G. Huang, and W. Chen, “Towards a theoretical understanding of multiscalar drought indices based on the relationship between precipitation and standardized precipitation index,” Theor. Appl. Climatol., vol. 136, no. 3–4, pp. 1465–1473, 2019.

W. Hatmoko, “Indeks Kekeringan Hidrologi untuk Alokasi Air di Indonesia.” Puslitbang Sumber Daya Air, Bandung, 2012.

M. Hendartyo, “BNPB: 4,87 Juta Jiwa Terdampak Kekeringan,” Tempo, 07-Sep-2018.

Saumlaki, “Maret, Kelaparan Ancam MTB Akibat Krisis Air Parah,” Dhara Pos, 02-Mar-2016.

A. Zubaidah, D. Dirgahayu, and J. M. Pasaribu, “Penginderaan jauh untuk pemantauan kekeringan lahan sawah,” J. Ilm. Widya, vol. 1, no. 1, 2014.

S. Y. J. Prasetyo, K. D. Hartomo, B. H. Simanjuntak, and D. W. Candra, “Mitigation & identification for local aridity, based of vegetation indices combined with spatial statistics & clustering k means,” in Journal of Physics: Conference Series, 2019, vol. 1235, no. 1, p. 12028.

R. P. Gupta, Remote sensing geology. Springer, 2017.

V. A. Bento, I. F. Trigo, C. M. Gouveia, and C. C. DaCamara, “Contribution of land surface temperature (TCI) to vegetation health index: A comparative study using clear sky and all-weather climate data records,” Remote Sens., vol. 10, no. 9, p. 1324, 2018.

S. M. Indirawati, S. Pandia, H. Mawengkang, and W. Hasan, “Inverse Distance Weighted Method and Environmental Health Risks of Plumbum Pollution in Drinking Water in Belawan Coastal Area,” Adv. Sci. Lett., vol. 23, no. 4, pp. 3339–3343, 2017.

S. R. Fitri, E. Saadudin, B. Pranoto, and others, “Comparison of Inverse Distance Weighted (IDW), Natural Neighbour, and Spline Interpolation Methods for Downscaling Data of Solar Energy Potential Map,” Ketenagalistrikan dan Energi Terbarukan, vol. 13, no. 1, pp. 27–38, 2014.

R. Kumar, M. Majid, S. Mir, and M. Shahzad, “Temporal analysis of drought using standard precipitation index (SPI) method,” Indian J. Soil Conserv., vol. 45, no. 3, pp. 348–350, 2017.

I. A. Andika, “Penerapan Metode Standardized Precipitation Index (SPI) untuk Analisa Kekeringan di DAS Ngasinan Kabupaten Trenggalek,” Universitas Brawijaya, 2016.

P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting. springer, 2016.

P. K. Pradhan, S. Dhal, and N. K. Kamila, “Time series least square forecasting analysis and evaluation for natural gas consumption,” Int. J. Recent Innov. Trends Comput. Commun., vol. 5, no. 11, pp. 91–99, 2017.

F. R. Hariri, “Metode Least Square Untuk Prediksi Penjualan Sari Kedelai Rosi,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 7, no. 2, pp. 731–736, 2016.

Article Metrics

Abstract view(s): 212 time(s)
PDF: 116 time(s)

Refbacks

  • There are currently no refbacks.