Pemanfaatan Steel Slag sebagai Substitusi Agregat Kasar pada Pembuatan Beton HVFA-SCC Tahan Serangan Sulfat

Nur Khotimah Handayani(1*), Nugroho Aldini Trisnawan(2)

(1) Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta
(2) Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta
(*) Corresponding Author

Abstract

Penggunaan beton dengan volume fly ash tinggi atau  High Volume Fly ash (HVFA) yang dipadukan dengan konsep  Self Compacting Concrete (SCC) telah terbukti mampu meningkatkan kekuatan beton terhadap serangan sulfat. Pengembangan dilakukan dengan menambahkan steel slag sebagai pengganti agregat kasar yang mampu meningkatkan kekuatan beton sekaligus pemanfaatan steel slag untuk mengurangi limbah hasil peleburan besi. Tujuan penelitian ini adalah untuk mengetahui pengaruh penambahan steel slag sebagai substitusi agregat kasar pada HVFA-SCC terhadap kekuatan beton yang mengalami serangan sulfat. Serangan sulfat disekenariokan dalam 4 metode perendaman, yaitu air laut, larutan sulfat 5%, larutan sulfat 5% dengan cara rendam angkat dan air aquades sebagai kontrol. Untuk mengukur kekuatan beton dilakukan pengujian kuat tekan dan modulus elastisitas dengan perencanaan awal sebesar 35 MPa, sedangkan untuk mengukur workability menggunakan pengujian slump flow dan L-box. Presentase penggunaan steel slag sebesar 20% dari total agregat kasar dan presentase penggunaan fly ash 50% dari total semen yang digunakan. Hasil pengujian menunjukkan substitusi 20% steel slag pada HVFA-SCC dapat meningkatkan kuat tekan beton  pada semua metode serangan sulfat, sehingga penggunaan steel slag pada HVFA-SCC dapat menjadi alternatif dalam pembuatan beton tahan serangan sulfat.

Keywords

HVFA-SCC, Serangan Sulfat, Steel Slag

Full Text:

PDF

References

Abd Rahman, R. F., Asrah, H., Rizalman, A. N., & Mirasa, A. K. (2023). Effect of Spent Bleaching Earth Ash on Sulphate Attack Resistance Of Concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.054

Abendeh, R. M., & Bani Baker, M. (2022). Using Steel Slag Aggregate to Strengthen Self-Compacting Concrete Durability. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 175(12), 925–939. https://doi.org/10.1680/jstbu.20.00067

Adiwijaya, Datu, I. T., & Khairil. (2021). Applicability of Steel Slag as Replacement Aggregate on Characteristic of Self-Compacting Concrete. IOP Conference Series: Earth and Environmental Science, 871(1). https://doi.org/10.1088/1755-1315/871/1/012017

Ahmad, S., Upadhyay, S., Umar, A., & Al-Osta, M. A. (2023). Effect of Recycled Crushed Glass and Recycled Coarse Aggregate on The Properties of Self-Compacting Concrete. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02532

Aliyah, F., Kambali, I., Setiawan, A. F., Radzi, Y. M., & Rahman, A. A. (2023). Utilization of Steel Slag from Industrial Waste for Ionizing Radiation Shielding Concrete: A Systematic Review. Dalam Construction and Building Materials (Vol. 382). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2023.131360

Allahverdi, A., & Škvára, F. (2000). Acidic Corrosion of Hydrated Cement Based Materials Part 2. - Kinetics of the Phenomenon and Mathematical Models. Ceramics - Silikaty, 44(4), 152–160.

Amin, A. M., Mahfouz, S. Y., Tawfic, A. F., & Ali, M. A. E. M. (2023). Experimental Investigation on Static/Dynamic Response And γ/n Shielding of Different Sustainable Concrete Mixtures. Alexandria Engineering Journal, 75, 465–477. https://doi.org/10.1016/j.aej.2023.06.010

Awoyera, P. O., Olofinnade, O. M., Ayobami, A., Akinwumi, I. I., & Oyefesobi, M. (2016). Performance of Steel Slag Aggregate Concrete with Varied Water- Cement Ratio. Jurnal Teknologi, 10, 125–131.

Biro Perencanaan-Setjen KKP. (2021). Rencana Strategis Kementerian Kelautan dan Perikanan Tahun 2021-2024.

Deepak, M., Ramalinga Reddy, Y., & Nagendra, R. (2023). Investigating The Mechanical Strength, Durability and Micro-Structural Properties of Slag-Based Concrete. Innovative Infrastructure Solutions, 8(10), 272. https://doi.org/10.1007/s41062-023-01234-2

Dey, S., Anurag, A., & Praveen Kumar, V. V. (2022). An Experimental Study on Strength and Durability Properties of Concrete with Partial Replacement of Aggregate with Ferrochrome Slag. Architecture, Structures and Construction, 2(3), 335–347. https://doi.org/10.1007/s44150-022-00072-7

EPG. (2005). ERMCO The European Guidelines for Self-Compacting Concrete. The European Guidelines for Self Compacting Concrete, May.

Handayani, N. K., Darmawan, B., & Nugroho, F. L. A. (2022). Pengaruh Substitusi Steel Slag Terhadap Sifat Mekanik High Volume Fly Ash-Self Compacting Concrete Pada Variasi Konsentrasi Perendaman Klorida. Simposium Nasional RAPI XXI, 5(Gambar 1), 171–176.

Indriyanto, L. A., Saputra, A., & Sulistyo, D. (2020). Pengaruh Air Laut Pada Masa Perawatan Terhadap Infiltrasi Ion Klorida Pada Beton Dengan Penambahan Fly Ash 12,5%. Jurnal Riset Rekayasa Sipil, 3(2), 61. https://doi.org/10.20961/jrrs.v3i2.40955

Kumar, S., Kapoor, K., Singh, S. P., Singh, P., & Sharma, V. (2022). A Review on The Properties of Natural and Recycled Coarse Aggregates Concrete Made with Different Coal Ashes. Cleaner Materials, 5(June), 100109. https://doi.org/10.1016/j.clema.2022.100109

Lie, H. A., & Narayudha, M. (2008). Steel-Slag as Aggregate Substitute’s Influence to Concrete’s Shear Capacity an Experimental Approach. Test, 1–8.

Madhavi, T. Ch., Raju, L. S., & Mathur, D. (2014). Durabilty and Strength Properties of High Volume Fly Ash Concrete. Journal of Civil Engineering Research, 4(2A), 7–11. https://doi.org/10.5923/c.jce.201401.02

Patnaikuni, I., Setunge, S., Solikin, M., Ling, X., & Boina, B. (2013). High Strength High Volume Fly Ash Concrete. 805–810. https://doi.org/10.3850/978-981-07-5354-2_m-62-464

Solikin, M., Basuki, & Setiawan, B. (2013). The Utilization of Self Compacting Concrete (SCC) in Producing Hollow Concrete Panel Wall to Provide Rapid Shelter for Post Disaster Srea. Procedia Engineering, 54(2004), 742–751. https://doi.org/10.1016/j.proeng.2013.03.068

Solikin, M., & Setiawan, B. (2017). The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental. MATEC Web of Conferences, 103, 1–8. https://doi.org/10.1051/matecconf/201710301003

Sosa, I., Thomas, C., Polanco, J. A., Setién, J., Sainz-Aja, J. A., & Tamayo, P. (2022). Durability of High-Performance Self-Compacted Concrete Using Electric Arc Furnace Slag Aggregate and Cupola Slag Powder. Cement and Concrete Composites, 127. https://doi.org/10.1016/j.cemconcomp.2021.104399

Wardhono, A. (2021). Flowability And Strength Properties of High Volume of Fly Ash Material on Self-Compacting Concrete. Journal of Physics: Conference Series, 1747(1). https://doi.org/10.1088/1742-6596/1747/1/012033

Wijaya, R. A., Wijayanti, S., Astuti, Y., Kimia, D., Sains, F., & Diponegoro, U. (2021). Fly Ash Limbah Pembakaran Batubara sebagai Zat Mineral Tambahan (Additive) untuk Perbaikan Kualitas dan Kuat Tekan Semen. 27(1), 127–134.

Wu, T., Jin, L., Fan, T., Qiao, L., Liu, P., Zhou, P., & Zhang, Y. (2023). A Multi-Phase Numerical Simulation Method for The Changing Process of Expansion Products on Concrete Under Sulfate Attack. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02458

Article Metrics

Abstract view(s): 104 time(s)
PDF: 72 time(s)

Refbacks

  • There are currently no refbacks.