Chromium (Cr) Metal Absorbtion Using Symbiosis of Fimbristylis globulosa with Agrobacterium sp.

Alfian Chrisna Aji(1*), Novia Citra Paringsih(2), Dwi Rizaldi Hatmoko(3), Ilham Mujahidin(4), Riza Rifai(5), Afif Iqbal Alviandi(6), Almas Al Jinan(7), Mujahidin Mujahidin(8), Sofyan Anif(9)

(1) Deparment of Environmental Science, University of Muhammadiyah Madiun, Madiun, East Java
(2) Deparment of Environmental Science, University of Muhammadiyah Madiun, Madiun, East Java
(3) Deparment of Environmental Science, University of Muhammadiyah Madiun, Madiun, East Java
(4) Deparment of Environmental Science, University of Muhammadiyah Madiun, Madiun, East Java
(5) Deparment of Environmental Science, University of Muhammadiyah Madiun, Madiun, East Java
(6) Deparment of Environmental Science, University of Muhammadiyah Madiun, Madiun, East Java
(7) Deparment of Environmental Science, University of Muhammadiyah Madiun, Madiun, East Java
(8) Department of Social Welfare, University of Muhammadiyah Madiun, Madiun, East Java
(9) Department of Biology Education, University of Muhammadiyah Surakarta, Surakarta, Central Java
(*) Corresponding Author

Abstract

Chromium (Cr) metal is a pollutant caused by industrial waste disposal and agricultural activities. An alternative solution to managing chromium pollution in an environmentally friendly manner is phytoremediation using Fimbristylis globulosa combined with Agrobacterium sp. This research aims to measure 1). the ability of Fimbristylis globulosa combined with Agrobacterium sp. to absorb Cr metal; and 2). the value of the Cr metal bioconcentration factor (BCF) absorbed by Fimbristylis globulosa combined with Agrobacterium sp. This research used factorial design 2x5 with randomized design. Chromium metal analysis using atomic absorption spectrophotometer. Data were analyzed using BCF test. The results showed: 1) the highest Cr metal absorption in the treatment of Fimbristylis globulosa-Agrobacterium sp.-Cr metal content of 30 ppm (T2V3) root: 7,987 ppm and shoot: 15,649 ppm; 2) the highest value of Cr metal BCF in the treatment of Fimbristylis globulosa-Agrobacterium sp.-Cr metal content of 30 ppm (T2V3) root is 0.266 and Fimbristylis globulosa-Agrobacterium sp.-Cr metal content 10 ppm (T2V1) shoot is 0.675. Conclusions of this research are: 1) Fimbristylis globulosa combined with Agrobacterium sp. has a higher Cr metal absorption ability than without a combination of both; and 2) Fimbristylis globulosa combined with Agrobacterium sp. has a higher value of the Cr metal BCF than without a combination of both.

 

Keywords

Agrobacterium sp.; bioconcentration factor; chromium metal; Fimbristylis globulosa

Full Text:

PDF

References

Aji, A.C., M., Masykuri, & R., Rosariastuti. (2017). Phytoremediation of rice field contaminated by Chromium with mending (Fimbristylis globulosa) to supporting sustainable agriculture. The 3rd International Indonesian Forum for Asian Studies: Borderless Communities & Nations with Borders (Challenges of Globalisation) at Gadjah Mada University (UGM) and University of Islam Indonesia (UII) Yogyakarta. International Proceeding, 1236-1246.

Aji, A.C., M., Masykuri, & R., Rosariastuti. (2019). Fitoremediasi logam kromium di tanah sawah dengan rami (Boehmeria nivea) dan environmental health agriculture system (EHAS). Bioeksperimen, 5(2): 61-69. DOI: 10.23917/bioeksperimen.v5i2.2795.

Alghanmi, S.I, A.F., Al Sulami, & T.A., El-Zayat. (2015). Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: kinetic and thermodynamics studies. International Soil and Water Conservation Research, 3(3): 196-208. DOI: https://doi.org/10.1016/j.iswcr. 2015.08.002.

Badan Pusat Statistik (BPS) Kabupaten Madiun. (2020). Kabupaten Madiun Dalam Angka 2020. Madiun: BPS Kabupaten Madiun.

Balai Penelitian Tanah. (2009). Analisis kimia Tanah, Tanaman, Air, dan Pupuk: Petunjuk Teknis Edisi 2. Bogor: Balai Penelitian Tanah Press.

Banks, M.K., A.P., Schwab, & C., Henderson. (2006). Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62(2): 255-264. DOI: https://doi.org/10.1016/j.chemosphere.2005.05.020.

Eastmond, D.A., J.T., MacGregor, & R.S., Slesinki. (2008). Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Critical Reviews in Toxicology, 38(3): 173-190, DOI: https://dx.doi.org/10.1080/10408440701845401.

Ferina, P., R., Rosariastuti, & Supriyadi. (2017). The effectiveness of mendong plant (Fimbristylis globulosa) as a phytoremediator of soil contaminated with chromium of industrial waste. Journal of Degraded and Mining Lands Management, 4(4): 899-905. DOI: 10.15243/jdmlm.2017.044.899.

Glick, B.R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3): 367-374. DOI: https://doi.org/10. 1016/j. biotechadv.2010.02.001.

Government Regulation of the Republic of Indonesia Number 22 of 2021 concerning Implementation of Environmental Protection and Management.

Hidayah, A.M., Purwanto, & T.R., Soeprobowati. (2014). Biokonsentrasi faktor logam berat Pb, Cd, Cr, dan Cu pada ikan nila (Oreochronis niloticus Linn.) di Karamba Danau Rawa Bening. Bioma, 16(1): 1-9. DOI: https://doi.org/10.14710/bioma.16.1.1-9.

Hoflich, G., & R., Metz. (1997). Interaction of plant microorganism association in heavy metal containing soils from sewage farms. Bodenkultur, 48: 238-247.

LaGrega, M.D., P.L., Buckingham, & J.C., Evans. (2001). Hazardous Waste Management. Second Edition. McGraw Hill Interntional Edition. New York.

Laoli, B.M.S., Kisworo, & D., Raharjo. (2021). Akumulasi pencemar kromium (Cr) pada tanaman padi di sepanjang kawasan aliran sungai opak, Kabupaten Bantul. Biospecies, 14(1): 59-66. DOI: https://doi.org/10.22437/biospecies.v14i1.11969.

Manurung, M., Y., Setyo, & N.P.N.R., Suandewi. (2018). Akumulasi logam berat krom (Cr) pada tanaman kentang (Solanum tuberosum L.) akibat pemberian pestisida, pupuk organik dan kombinasinya. Jurnal Kimia, 12(2): 165-172.

Nan, H., Z., Jifang, D., Dexin, L., Guangyue, Y., Jie, C., Xin, & Y., Jia. (2013). Screening of native hyperaccumulators at the Huayuan River contaminated by heavy metals. Bioremediation Journal, 17(1): 21-29. DOI: https://dx.doi. org/10.1080/10889868.2012.703260.

Pramono, A., R., Rosariastuti, N., Ngadiman, & I.D., Prijambada. (2012). Peran rhizobakteria dalam fitoekstrasi logam berat kromium pada tanaman jagung. Ecolab, 6(1): 38-50. DOI:10.20886/jklh.2012.6.1.38-50.

Pramono, A., R., Rosariastuti, N., Ngadiman, & I.D., Prijambada. (2013). Bacterial Cr (VI) reduction and its impact in bioremediation. Jurnal Ilmu Lingkungan, 11(2): 120-131. DOI: https://doi.org/10.14710/presipitasi.v%25vi%25i.80-95.

Regulation of the Minister of Environment and Forestry of the Republic of Indonesia Number 6 of 2021 concerning Procedures and Requirements for the Management of Hazardous and Toxic Waste.

Rosariastuti, R., I.D., Prijambada, Ngadiman, G.S., Prawidyarini, & A.R., Putri. (2013). Isolation and identification of plant growth promoting and chromium uptake enhancing bacteria from soil contaminated by leather tanning industrial waste. Journal of Basic and Applied Sciences, 9: 243-251. DOI:10.6000/1927-5129.2013.09.32.

Rosariastuti, R., S., Supriyadi, & W., Widiastuti. (2020). Teknologi fitoremediasi untuk penanganan pencemaran logam berat di lahan pertanian di Kecamatan Kebakkramat Kabupaten karanganyar. Jurnal Litbang Provinsi Jawa Tengah, 18(1): 25-36. DOI: https://doi.org/10.36762/jurnaljateng.v18i1.804.

Saffarida, A., & Ngadiman. (2007). Rhizofiltrasi kromium dan keragaman komunitas rhizobakteri pada tanaman air. Tesis. Magister Bioteknologi. Yogyakarta: Universitas Gajah Mada.

Sembel, D.T. (2015). Toksikologi Lingkungan: Dampak Pencemaran Dari Berbagai Bahan Kimia Dalam Kehidupan Sehari-hari. Yogyakarta: CV. Andi Offset.

Suryanto, H., E., Marsyahyo, Y.S., Irawan, & R., Soenoko. (2014). Morphology, structure, and mechanical properties of natural cellulose fiber from mendong grass (Fimbristylis globulosa). Journal of Natural Fibers, 11(4): 333-351. DOI: https://dx.doi.org/ 10.1080/15440478.2013.879087.

Van Esch, G.J. (1977). Aquatic Pollutant and Their Potential Ecological Effects. In Hutzingen, O., I.H. Van Lelyuccid and B.C.J. Zoetemen, ed. Aquatic Pollution: Transformation and Biological Effects. Procceding of the 2nd International Symposium on Aquatic Pollutans, Amsterdam. Pergamon Press, New York. 1-12.

Yoon, J., X., Cao, Q., Zho, & L.Q., Ma. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Journal Science of The Total Environment, 368(2-3): 456-464. DOI: https://doi.org/10.1016/j.scitotenv.2006.01.016.

Zainuri, M., Sudrajat, & E.S., Siboro. (2011). Kadar logam berat Pb pada ikan beronang (Siganus sp), lamun, sedimen, dan air di wilayah pesisir Kota Bontang-Kalimantan Timur. Jurnal Kelautan, 4(2): 102-118. DOI: https//doi.org/10.21107/jk.v4i2.874.

Article Metrics

Abstract view(s): 103 time(s)
PDF: 58 time(s)

Refbacks

  • There are currently no refbacks.