Keanekaragaman Jenis Kupu-Kupu di Lahan Budidaya Goalpara-Perbawati Kabupaten Sukabumi

Rahadian Bimo Wiscaksono1, Insan Kurnia2*, dan Gatot Widodo2
1) Alumni, Program Studi Ekowisata, Sekolah Vokasi, IPB University, Jl. Kumbang No. 14, Bogor
2) Program Studi Ekowisata, Sekolah Vokasi, IPB University, Jl. Kumbang No. 14, Bogor
*E-mail: insankurnia@apps.ipb.ac.id
Paper submit: 10 Januari 2022, Paper publish: 31 Maret 2023

Abstract—Butterflies (Order Lepidoptera) act in ecosystem as pollinators, ecosystem balancers, and environmental indicators. Butterflies respond to changes in the environment and forms of land use. The Goalpara and Perbawati areas have a long history of being managed as cultivation lands, so research is needed to identify the diversity of butterfly species in these areas. The research was conducted in February-May 2022 in five types of habitats, namely tea plantation, coffee plantation, flower plantation, vegetable plantation, and lake. The observed butterflies were adult individuals (not caterpillars) taken by sweeping method. The study used the transect line method with a length of 100 m and a width of 10 m and a duration of 30 minutes at 08.00-14.00 WIB. Data were analyzed by species diversity index and evenness index. The diversity of butterflies found was 19 species with the dominant species being Ypthima pandocus and Eurema blanda. The H’ value is 2.23 and the E value is 0.76. The most common species found in tea plantation were nine species, followed by lake with eight species. One species, Ypthima huebneri, can be found in all types of habitats.

Keywords: butterfly, diversity, Goalpara, Perbawati, Plantation

Kata kunci: Goalpara, keanekaragaman, kupu-kupu, lahan budidaya, Perbawati

PENDAHULUAN

Kupu-kupu termasuk serangga dari Ordo Lepidoptera yang dicirikan memiliki sayap bersisik dengan bentuk dan warna bervariasi. Kupu-kupu memiliki nilai penting secara ekologis dalam ekosistem, diantaranya sebagai polinator, penyelimbang ekosistem, serta sebagai indikator lingkungan. Kupu-kupu merupakan polinator yang efektif (Mertens et al., 2021; Ghazanfar et al., 2016) oleh karena itu kupu-kupu memiliki hubungan erat dengan keberadaan nektar dari tumbuhan (Pertiwi et al., 2021; Drewniak et al., 2021). Kupu-kupu juga berperan sebagai indikator lingkungan, bahwa lingkungan yang baik akan menghadirkan kekayaan jenis kupu-kupu lebih tinggi, demikian dengan kondisi sebaliknya (Pacheco et al., 2021; Legal et al., 2020; Stivers et al., 2019; Jew et al., 2015).

Selain nilai penting, sebagian kupu-kupu dianggap bernilai negatif. Kehidupan kupu-kupu yang mengalami metamorfosisis, pada fase imago atau ulat sering dianggap
sebagai hama pertanian (Khan & Molla, 2021; Abbes et al., 2020; Ryan et al., 2019) sehingga dibasmi yang akhirnya berdampak pada penurunan keaneakaraganam kupu-kupu (Gols et al., 2020; Gilburn et al., 2015) dan bahkan pada organisme lain (Whitehorn et al., 2018). Keberadaan hama menjadi salah satu faktor yang menurunkan produksi pertanian (Díaz-Siefer et al., 2022; Karp et al., 2013). Oleh karena itu, akhirnya banyak berkembang metode pengendalian hama yang ramah lingkungan (Lindell, 2020; García et al., 2018).

Kupu-kupu memiliki sifat sensitif terhadap perubahan lingkungan yang disebabkan oleh berbagai faktor. Secara umum, kualitas habitat berpengaruh terhadap kupu-kupu (Frahtia et al., 2022; Wix et al., 2019). Kupu-kupu juga dipengaruhi oleh perubahan iklim (Gopinath et al., 2021; Lee et al., 2020; Mills et al., 2017), degradasi lahan serta fragmentasi hutan (Isma'il et al., 2020; Harmonis & Saud, 2017), hilangnya habitat (Warren et al., 2021), maupun perubahan pemanfaatan lahan (Schérer et al., 2021). Oleh karena itu, kondisi habitat dan bentuk pemanfaatan lahan memberikan dampak terhadap kupu-kupu (Chaianunporn & Chaianunporn, 2019; (Ginoga et al., 2019; Aguirre-Gutiérrez et al., 2017).

Habitat kupu-kupu umumnya dekat dengan sumber pakan dan air (Cayton & Haddad, 2018). Indikator lain yang berpengaruh diantaranya suhu (Montejo-Kovacevich et al., 2020; Panjaitan, 2016), kelembaban (Checa et al., 2014; Ruchi et al., 2012), dan kecepatan angin (Kharouba et al., 2014; Brattström et al., 2008). Berbagai faktor tersebut, menunjukkan bahwa habitat memiliki peranan penting bagi keberadaan kupu-kepu. Konsep habitat ini tidak hanya terbatas untuk kupu-kupu di habitat alami, namun juga di habitat buatan dan memiliki intensitas tinggi aktivitas manusia (Azahra et al., 2022; Gonggoli et al. 2021; Suwanno et al. 2018; Nacua, 2016).

METODE PENELITIAN

1. **Waktu dan Tempat**

Penelitian dilaksanakan pada Bulan Februari-Mei 2022. Lokasi penelitian dilakukan di Wilayah Goalpa Kecamatan Sukaraja dan Wilayah Perbawati Kecamatan Sukabumi, Kabupaten Sukabumi (Gambar 1). Habitat yang diteliti terdiri atas habitat terestrial mencakup kebun teh (KT), kebun kopi (KK), kebun sayuran (KS), kebun bunga
KB), serta habitat akuatik yang mencakup setu atau danau kecil (SD).

2. Alat dan Obyek
Alat yang digunakan yaitu peta kawasan, GPS, termometer, kamera, stopwatch, pita ukur, jaring serangga, pinset, kertas minyak, dan boks spesimen. Obyek kupu-kupu yang diamati adalah individu dewasa (bukan ulat). Obyek habitat yang diamati adalah suhu udara, kelembaban, serta kondisi vegetasi.

3. Teknik Pengumpulan Data
Kupu-kupu diambil dengan metode sweeping menggunakan jaring serangga. Data kupu-kupu diambil dengan metode garis transek (Fachrul, 2007). Transek berukuran panjang 100 meter dan lebar kanan dan kiri 10 meter. Durasi pengamatan adalah 30 menit setiap jalur, pada pukul 08.00-14.00 WIB. Transek untuk habitat terestrial diletakkan secara acak di tengah habitat. Sementara untuk tipe habitat akuatik, transek diletakkan dekat dengan badan air di sekitar habitat akuatik.

4. Analisis Data
Data kupu-kupu dianalisis dengan indeks keanekearagaman jenis Shannon-Wiener (H′) serta indeks kemerataan (E′) (Krebs, 2014; Magurran, 2004). Indeks keanekearagaman jenis Shannon-Wiener dihitung dengan:

\[H' = - \sum_{i=1}^{s} p_i \ln p_i \]

Keterangan:
- \(H' \) = Indeks keanekearagaman Shannon-Wiener
- \(n \) = Jumlah individu jenis ke-i
- \(\ln \) = Logaritma natural
Bioeksperimen, Volume 9 No. 1 (Maret 2023)

N = Jumlah individu seluruh jenis

p = Proporsi jenis ke-i

Kriteria nilai **H'**, yaitu:

- **H'< 1**: Tingkat keanekaragaman jenis rendah
- **1< H'≤ 3**: Tingkat keanekaragaman jenis sedang
- **H'> 3**: Tingkat keanekaragaman jenis tinggi

Indeks kemerataan dihitung dengan:

\[E = \frac{H'}{\ln S} \]

Keterangan:

- **E** = Indeks kemerataan jenis (Evenness)
- **H'** = Indeks keanekaragaman Shannon-Wiener
- **S** = Jumlah jenis yang ditemukan

Kriteria nilai **E**, yaitu:

- **E < 0.5**: Tingkat kemerataan jenis rendah, komunitas tertekan
- **0.50 ≥ E > 0.75**: Tingkat kemerataan jenis sedang, komunitas labil
- **0.75 ≥ E ≥ 1.00**: Tingkat kemerataan jenis tinggi, komunitas stabil

HASIL DAN PEMBAHASAN

1. **Kondisi Habitat**

a. **Habitat Kebun Teh**

Habitat kebun teh didominasi tanaman budidaya teh. Vegetasi pohon relatif jarang, hanya terdapat di bagian tepi perkebunan teh. Jenis pohon yang ada diantaranya damar (Agathis dammara), jati (Tectona grandis), suren (Toona ciliata), dan sengon (Paraserianthes falcata). Vegetasi lain yang ada berupa tumbuhan liar seperti alang-alang (Imperata cylindrica) dan paku tere (Impatiens platypetala) yang banyak terdapat di sela-sela tanaman teh. Terdapat aliran sungai di dalam perkebunan teh. Suhu rerata yaitu sebesar 23°C dan rerata kelembaban mencapai 72%.

b. **Habitat Kebun Kopi**

Habitat kebun kopi didominasi tanaman kopi. Vegetasi lain yang terdapat diantaranya pinus (Pinus merkusii), pisang, singkong (Manihot esculenta), dan ilang-ilang. Kondisi tanah di antara tanaman kopi ditumbuhi rumput liar dengan penutupan hampir 100%. Terdapat aliran sungai kecil di bagian tepi habitat kebun kopi. Suhu rerata yaitu sebesar 22°C dan rerata kelembaban yaitu sebesar 80%.

c. **Habitat Kebun Sayur**

Habitat kebun sayur didominasi tanaman budidaya sayuran diantaranya tomat (Solanum lycopersicum), daun bawang (Allium fistulosum), cabai (Capsicum annuum), kubis (Brassica oleracea), caisim (Brassica chinensis), dan wortel (Daucus carota). Vegetasi lain yang ada diantaranya pisang (Musa paradisiaca), alang-alang, serta semak-belukar. Terdapat sungai kecil yang dimanfaatkan untuk pengairan tanaman sayur. Suhu rerata yaitu sebesar 23°C dan rerata kelembaban yaitu sebesar 86%.

d. **Habitat Kebun Bunga**

Habitat kebun bunga didominasi tanaman budidaya bunga diantaranya bunga aster (Callistephus chinensis), bunga sedap malam (Poliante tuberosa), dan bunga balon (Asclepias physocarpa). Jenis bunga yang ditanam diantaranya bunga aster, bunga sedap malam, dan bunga balon. Vegetasi lain yang ada berupa tumbuhan liar seperti ketapang, pohon (Casuarina equisetifolia), dan pohon madidi (Diospyros kaki). Terdapat aliran sungai yang dimanfaatkan untuk pengairan kebun bunga. Suhu rerata yaitu sebesar 23°C dengan rerata kelembaban yaitu sebesar 80%.

e. **Habitat Situ/Danau**

Habitat situ/danau terdapat di dua lokasi yaitu, Situ Ciheruk, Desa Sukamekar dan Situ Batu Karut, Desa Selawati. Kondisi fisik air setu keruh. Kondisi vegetasi di
sekitar setu diantaranya kaliandra, bunga matahari meksiko, bunga liar abadi, bunga lizzie dan bambu. Suhu rerata yaitu sebesar 25°C dan rerata kelembaban yaitu sebesar 77%.

2. Keanekaragaman Jenis Kupu-kupu

Kupu-kupu yang dijumpai sebanyak 19 jenis dari tiga suku. Suku Nymphalidae memiliki anggota jenis yang paling banyak yaitu mencapai 15 jenis, sementara dua suku lainnya hanya terdiri atas satu jenis dan tiga jenis (Tabel 1). Walaupun ditemukan berulang, namun jumlah individu yang dijumpai relatif sedikit.

<table>
<thead>
<tr>
<th>No.</th>
<th>Suku/ Nama Ilmiah</th>
<th>Nama Indonesia</th>
<th>Habitat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Papilio demoleus</td>
<td>Kupu-kupu jekuk</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Suku Pierida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Appias olferna</td>
<td>Kupu-kupu albatros belang timur</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Eurema blanda</td>
<td>Kupu-kupu belerang</td>
<td>2 2</td>
<td>12 16</td>
</tr>
<tr>
<td>4</td>
<td>Leptosia nina</td>
<td>Kupu-kupu kerai payung</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Superiorinae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cynthia cardui</td>
<td>Kupu-kupu vanessa cardui</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Danaus chrysippus</td>
<td>Kupu-kupu harimau polos</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Hyppolimnas bolina</td>
<td>Kupu-kupu lalat telur</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Junonia almana</td>
<td>Kupu-kupu baci merak</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Junonia atlites</td>
<td>Kupu-kupu baci abu-abu</td>
<td>1 1 2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Junonia orithya</td>
<td>Kupu-kupu baci biru</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Junonia vilida</td>
<td>Kupu-kupu padang argus</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Melanitis phedima</td>
<td>Kupu-kupu Coklat Senja</td>
<td>1 1 1 3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Orsatiaena medus</td>
<td>Kupu-kupu semak coklat mata halus</td>
<td>1 1 2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Symbrentia lilaea</td>
<td>Kupu-kupu badut semenanjung</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tanaecia pelea</td>
<td>Kupu-kupu viscoun malaya</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Tanaecia lepidea</td>
<td>Kupu-kupu viscoun abu-abu</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Thaumura atir</td>
<td>Kupu-kupu raja hutan berumbai</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Ypthima huebneri</td>
<td>Kupu-kupu cincin empat</td>
<td>4 1 2 1 1 9</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Ypthima panodocus</td>
<td>Kupu-kupu cincin tiga</td>
<td>11 3 15 29</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: KT (Kebun Teh), KK (Kebun Kopi), KS (Kebun Sayur), KB (Kebun Bunga), SD (Situ/Danau)

3. Indeks Keanekejaragaman Jenis dan Indeks Kesamaan

Nilai indeks keanekejaragaman jenis (H’) kupu-kupu yang didapatkan sebesar 2,23, sementara nilai indeks kemeraatan jenis (E) sebesar 0,76. Nilai H’ yang didapatkan termasuk kategori sedang karena berkisar antara nilai 1-3, sementara nilai E termasuk kategori tinggi yang bermakna komunitas stabil.

Nilai H yang didapatkan relatif lebih tinggi dibandingkan (Achmad et al., 2014) yang mendapatkan nilai 1,9 untuk kupu-kupu di Pulau Puhawang Besar dengan kondisi habitat berupa pulau kecil di lepas pantai Lampung. Demikian juga jika dibandingkan dengan (Sari et al., 2019) yang mendapatkan nilai H’ sebesar 2,02 walaupun jenis yang dijumpai lebih banyak yaitu 24 jenis kupu-kupu. Rendahnya nilai H’ ini diduga karena adanya beberapa jenis kupu-kupu yang dominan di lokasi penelitian.

Komunitas stabil berarti bahwa tidak ada jenis kupu-kupu yang dominan di lokasi penelitian. Kondisi stabil mengindikasikan juga bahwa komunitas akan relatif tidak berubah baik dalam komposisi jenis maupun jumlah individu jenis kupu-kupu. Tidak ada jenis kupu-kupu dengan jumlah individu yang mendominasi komunitas dengan jumlah individu yang berbeda jauh dengan jumlah individu jenis kupu-kupu lainnya. Hanya dua jenis yaitu Kupu-kupu rumput bersih kuning dan Kupu-kupu cincin tiga yang memiliki jumlah individu relatif tinggi yaitu 16 ekor dan 29 ekor, sementara 17 jenis lainnya berkisar antara satu sampai empat ekor.

4. Penyebaran Kupu-kupu Menurut Habitat

Habitat paling banyak dijumpai kupu-kupu adalah kebun teh diikuti habitat danau/setu. Sementara habitat dengan jenis kupu-kupu paling sedikit adalah habitat kebun kopi dan kebun sayuran (Gambar x). kebun teh yang diamati yaitu Kebun Teh Goalpara dan Kebun Teh Perbawati yang merupakan perkebunan dengan usia tua yaitu hampir 200 tahun. Habitat ini merupakan habitat paling bervegetasi dibandingkan empat habitat lainnya sehingga mendukung keanekaragaman jenis kupu-kupu lebih tinggi.

Gambar 2. Jumlah jenis dan individu kupu-kupu menurut tipe habitat

juga (Sumarto & Siahaan, 2012; Lomolino, 2001)

Selain luas habitat, keberadaan sumber air juga menjadi faktor yang mendukung tingginya jumlah jenis kupu-kupu di habitat setu/danau. Walaupun jumlah jenis lebih rendah dibandingkan habitat kebun teh, namun habitat setu/danau memiliki jumlah individu paling tinggi. Hal ini senada dengan pernyataan (Cayton & Haddad, 2018) bahwa keberadaan sumber air berpengaruh terhadap kehadiran kupu-kupu. Penelitian (Faza et al., 2022) menemukan jumlah jenis kupu-kupu lebih tinggi di sekitar air terjun dibandingkan tiga habitat lain di Kendal Jawa Tengah. Sedikit berbeda, penelitian (Hengkengbala et al., 2020) yang menemukan jumlah individu kupu-kupu lebih banyak di habitat danau dibandingkan hutan dan kebun, walaupun jumlah jenisnya lebih rendah dibandingkan dua habitat lainnya.

SIMPULAN DAN SARAN

UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada Pimpinan PT Perkebunan Nusantara VIII yang telah memberikan izin kegiatan. Terima kasih juga disampaikan masyarakat yang mengizinkan penelitian di lahan miliknya.

DAFTAR PUSTAKA

Ismail, N., Rahman, A. A. A., Mohamed, M., Bakar, M. F. A., & Tokiman, L. (2020). Butterfly as bioindicator for development of conservation areas in bukit reban kambing, bukit

