PENURUNAN SINTESIS NITRIC OXIDE PADA KULTUR HUVECs DALAM KONDISI HIPERGLIKEMIA AKUT

I Putu Dedy Arjita(1*)

(1) Fakultas Kedokteran, Universitas Islam Al-Azhar, Mataram, Nusa Tenggara Barat
(*) Corresponding Author

Abstract

ABSTRAK

Diabetes mellitus merupakan penyakit metabolik dengan hiperglikemia yang cenderung mengakibatkan disfungsi sel endotel, akibat adanya mekanisme sintesis nitric oxide (NO). Penelitian ini bertujuan untuk mengukur produksi NO dari kultur Human umbilical vein endothelial cell (HUVECs) yang terpapar glukosa pada beberapa variasi kosentrasi dengan menggunakan teknik bioassay. Penelitian ini menggunakan desain Randomized Control Trial (RCT) 3 kelompok. Kultur HUVECs yang dipaparkan glukosa selama 3 hari. Kelompoknya yaitu kelompok normal (glukosa 5 mM), keadaan hiperglikemi akut dengan variasi glukosa 22mM, dan glukosa 33 mM. Produksi NO diukur dengan membandingkan efek relaksasi pemberian larutan HUVECs terpapar glukosa pada aorta marmut pra-kontraksi fenilefrin (10-6 M) dengan efek isosorbid dinitrat pada aorta marmut pra-kontraksi fenilefrin. Kontraktilitas dicatat dengan menggunakan Mc Lab Computer. Penurunan sintesis NO pada kultur HUVECs terendah terjadi pada perlakuan dengan pemaparan konsentrasi glukosa tertinggi (33 mM) dengan nilai rata-rata 0.17 x 10-7 ± 0.09 x 10-7 dengan nilai signifikansi < 0,05. Sehingga dapat disimpulkan bahwa ada keterkaitan antara kondisi hiperglikemia akut dengan penurunan kultur HUVECs untuk mensintesis NO.

Kata Kunci: Nitric Oxide, HUVECs, Hiperglikemia Akut

 

ABSTRACT

Diabetes mellitus is a metabolic disease with hyperglycemia that tends to cause endothelial cell dysfunction, due to the mechanism of decreasing nitric oxide (NO) synthesis. This study aimed to measure NO production from human umbilical vein endothelial cell (HUVECs) cultures exposed to glucose at various concentrations using bioassay techniques. This study used a 3 group Randomized Control Trial (RCT) design. Culture of HUVECs exposed to glucose for 3 days. The groups were the normal group (glucose 5 mM), acute hyperglycemia with variations in glucose 22 mM, and glucose 33 mM. NO production was measured by comparing the relaxing effect of glucose-exposed HUVECs solution on the aorta of pre-contracted phenylephrine guinea pigs (10-6 M) with the effect of isosorbide dinitrate on the aorta of pre-contracted phenylephrine guinea pigs. Contractility was recorded using a Mc Lab Computer. The lowest reduction in NO synthesis in HUVECs culture occurred in the treatment with the highest glucose concentration exposure (33 mM) with an average value of 0.17 x 10-7 ± 0.09 x 10-7 with a significance value <0.05. So it can be concluded that there was a relationship between acute hyperglycaemia with decreased NO synthesis in HUVECs culture.

Keywords: Nitric Oxide, HUVECs, Acute Hyperglycemia

References

Adela, R., Nethi, S. K., Bagul, P. K., Barui, A. K., Mattapally, S., Kuncha, M., Patra, C. R., Reddy, P. N. C., & Banerjee, S. K. 2015. Hyperglycaemia Enhances Nitric Oxide Production in Diabetes: A Study from South Indian Patients. PLoS One, 10(4), e0125270. Available at: https://doi.org/10.1371/journal.pone.0125270

American Diabetes Association. 2010. Diagnosis and classification of diabetes mellitus. In Diabetes Care (Vol. 33, Issue SUPPL. 1, p. S62). American Diabetes Association. Available at: https://doi.org/10.2337/dc10-S062

Assmann, T. S., Brondani, L. A., Bouças, A. P., Rheinheimer, J., de Souza, B. M., Canani, L. H., Bauer, A. C., & Crispim, D. 2016. Nitric oxide levels in patients with diabetes mellitus: A systematic review and meta-analysis. Nitric Oxide - Biology and Chemistry, 61, 1–9. Available at: https://doi.org/10.1016/j.niox.2016.09.009

Avogaro, A., Albiero, M., Menegazzo, L., De Kreutzenberg, S., & Fadini, G. P. 2011. Endothelial dysfunction in diabetes: The role of reparatory mechanisms. In Diabetes Care (Vol. 34, Issue SUPPL. 2, pp. S285–S290). American Diabetes Association. Available at: https://doi.org/10.2337/dc11-s239

Beckman, J. S., and Crow, J. P. 1993. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochemical Society Transactions, 21(2), 330–334. Available at: https://doi.org/10.1042/bst0210330

Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Bärnighausen, T., Davies, J., & Vollmer, S. 2018. Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care, 41(5), 963–970. Available at: https://doi.org/10.2337/dc17-1962

Brownlee, M. 2005. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54(6), 1615–1625. Available at: https://doi.org/10.2337/diabetes.54.6.1615

Di Fulvio, P., Formoso, G., Di Silvestre, S., Di Tomo, P., Giardinelli, A., La Sorda, R., Di Pietro, N., Piantelli, M., Consoli, A., & Pandolfi, A. 2006. Mo-W2:5 Increased vascular wall endothelial nitric oxide synthase (ENOS) levels in umbilical cords from gestational diabetic women. Atherosclerosis Supplements, 7(3), 14. Available at: https://doi.org/10.1016/s1567-5688(06)80034-6

Förstermann, U. 2010. Nitric oxide and oxidative stress in vascular disease. In Pflugers Archiv European Journal of Physiology (Vol. 459, Issue 6, pp. 923–939). Springer. Available at: https://doi.org/10.1007/s00424-010-0808-2

Honing, M. L. H., Morrison, P. J., Banga, J. D., Stroes, E. S. G., & Rabelink, T. J. 1998. Nitric oxide availability in diabetes mellitus. In Diabetes/Metabolism Reviews (Vol. 14, Issue 3, pp. 241–249). John Wiley & Sons, Ltd. Available at: https://doi.org/10.1002/(SICI)1099-0895(1998090)14:3<241::AID-DMR216>3.0.CO;2-R

Hoshiyama, M., Li, B., Yao, J., Harada, T., Morioka, T., & Oite, T. 2004. Effect of High Glucose on Nitric Oxide Production and Endothelial Nitric Oxide Synthase Protein Expression in Human Glomerular Endothelial Cells. Nephron Experimental Nephrology, 95(2), e62–e68. Available at: https://doi.org/10.1159/000073673

Ignarro, L. J. 2014. Nitric Oxide. In Reference Module in Biomedical Sciences. Elsevier. Available at: https://doi.org/10.1016/B978-0-12-801238-3.00245-2

Ishii, N., Patel, K. P., Lane, P. H., Taylor, T., Bian, K., Murad, F., Pollock, J. S., & Carmines, P. K. 2001. Nitric Oxide Synthesis and Oxidative Stress in the Renal Cortex of Rats with Diabetes Mellitus. Journal of the American Society of Nephrology, 12(8).

Pacher, P., Beckman, J. S., & Liaudet, L. 2007. Nitric oxide and peroxynitrite in health and disease. In Physiological Reviews (Vol. 87, Issue 1, pp. 315–424). American Physiological Society. Available at: https://doi.org/10.1152/physrev.00029.2006

Pitocco, D., Zaccardi, F., Di Stasio, E., Romitelli, F., Santini, S. A., Zuppi, C., & Ghirlanda, G. 2010. Oxidative stress, nitric oxide, and diabetes. In Review of Diabetic Studies (Vol. 7, Issue 1, pp. 15–25). Available at: https://doi.org/10.1900/RDS.2010.7.15

Ridnour, L. A., Thomas, D. D., Mancardi, D., Espey, M. G., Miranda, K. M., Paolocci, N., Feelisch, M., Fukuto, J., & Wink, D. A. 2004. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. In Biological Chemistry (Vol. 385, Issue 1, pp. 1–10). Biol Chem. Available at: https://doi.org/10.1515/BC.2004.001

WHO. 2020. Diabetes. World Health Organization. Available at: https://www.who.int/health-topics/diabetes#tab=tab_1 (Accessed: 28 December 2020)

Article Metrics

Abstract view(s): 300 time(s)
PDF (Bahasa Indonesia): 350 time(s)

Refbacks

  • There are currently no refbacks.