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Abstract 

Kubu Raya Regency is a regency in the province of West Kalimantan which has a wetland ecosystem in-

cluding a high-density swamp or peatland ecosystem along with an extensive area of mangroves. The func-

tion of wetland ecosystems is essential for fauna, as a source of livelihood for the surrounding community 

and as storage reservoir for carbon stocks. Most of the land in Kubu Raya Regency is peatland. As a conse-

quence, peat has long been used for agriculture and as a source of livelihood for the community. Along with 

the vast area of peat, the regency also has a potential high risk of peat fires. This study aims to predict land 

use changes in Kubu Raya Regency using three statistical machine learning models, specifically Logistic 

Regression (LR), Random Forest (RF) and Additive Logistic Regression (ALR). Land cover map data were 

acquired from the Ministry of Environment and Forestry and subsequently reclassified into six types of land 

cover at a resolution of 100 m. The land cover data were employed to classify land use or land cover class 

for the Kubu Raya regency, for the years 2009, 2015 and 2020. Based on model performance, RF provides 

greater accuracy and F1 score as opposed to LR and ALR. The outcome of this study is expected to provide 

knowledge and recommendations that may aid in developing future sustainable development planning and 

management for Kubu Raya Regency. 

Keywords: land use change modelling, wetlands, logistic regression, random forest, additive logistic regres-

sion. 

1. Introduction 

Peat forest is an area that has the potential to store carbon stocks many times more than tropical 

rain forests or mineral forests (Adeolu et al., 2018; Aditya et al., 2020). The richness of biodiver-

sity in peat forests also varies, interacting with each other to establish peat ecosystems. However, 

despite the potential benefits, peat forest is vulnerable to forest and land degradation (Abraham et 

al., 2023). Land clearing is commonly followed by burning, while dry peatland is highly suscep-

tible to fire. Fire on peatland cause the release of carbon into the atmosphere. The process of 

releasing greenhouse gases via the oxidation of peat into the atmosphere triggers a high level of 

greenhouse gas emissions (Abuhay et al., 2023). 

The amount of emissions resulting from degraded peatlands is greater than the emissions produced 

by other ecosystems. Based on the research conducted by Rahsia et al. (2021), the amount of CO2 

emissions on peatlands that burned in May-July 2019 in the city of Pontianak indicated that CO2 

flux during the measurement period ranged from 183-595 tons of CO2. The research undertaken 

by Aguilera et al. (2023) maintains that the estimated calculation of carbon released by deforested 

and drained tropical peatlands is 31 Mg C per hectare, per annum. Emissions from peatlands have 

a significant impact on the surrounding biodiversity. The temperature of the Earth will increase 

due to heat trapped in the atmosphere. Preserving the earth from experiencing a temperature rise 

over 2 degrees Celsius in the future can be achieved by conserving peat ecosystem areas (Akbar 

et al., 2023). 

Peat ecosystem protection and management where attempts are made to preserve the function of 

the peat ecosystem and prevent loss to the peat ecosystem have been included in the Regulation 

of The Government of The Republic of Indonesia. The regulation also mandates stakeholders to 

prepare a Peat Ecosystem Protection and Management Plan document (RPPEG), that contains 

analysis and recommendations on peat ecosystem management (Beroho et al., 2023). The docu-

ment is summarised into a document for the protection and management of peat ecosystems at the 

provincial and regency levels. The RPPEG is expected to ensure the preservation of peat ecosys-

tem functions in West Kalimantan, specifically in Kubu Raya Regency.  

Kubu Raya Regency is a regency situated in West Kalimantan Province with somewhat extensive 

peat wetlands that support numerous economic activities. The most common activities that are 

carried out as a source of livelihood for people on peatland include farm management, fish farm-

ing, and other activities with high economic value (Wang, 2022). However, the utilisation of peat-

lands frequently fails to pay attention to the application of the principle of sustainable peatland 
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use. One peatland exploitation activity that produces widespread damage is the draining of peat-

lands which causes drought resulting in peat fires, notably in the dry season. Therefore, the Indo-

nesian government has focused on Kubu Raya Regency with the aim of restoring the peat. Based 

on these conditions, conducting land use change analysis is essential to support the government's 

goal of ensuring the preservation of peat ecosystem functions and to specifically assist in prepar-

ing the RPPEG documents, particularly in relation to Kubu Raya Regency. 

Land use change analysis can be completed by building a model. The land use change model may 

facilitate the understanding of the process of land use change and its driving factors (Bohai et al., 

2023; Cao et al., 2023; Danardono, et al., 2021; Fikriyah, et al., 2023). In addition, the model can 

be used to predict changes in land use and land cover by means of a simulation process based on 

a geographic information system using a statistical machine learning approach. The most common 

model in classification is Logistic Regression (LR), which is an example of Generalised Linear 

Models (GLM) (Chen et al., 2022). In linear models, such as linear regression, the assumption 

that the response variables are normally distributed is required. In fact, response variables are 

repeatedly found in the form of binomial, Poisson, gamma and several exponential family distri-

butions. Hence, the GLM has developed to overcome this problem. 

GLM have three components: (i) the random component specifies the response variable and its 

probability distribution; (ii) linear predictors; and (iii) link function connects the random compo-

nent with the linear predictors. In the context of the GLM, the distribution of a random component 

in LR is binomial and the link function is the natural log of the odds known as logit link function. 

Nonetheless, LR only captures the linear relationship between the logit link function and the ex-

planatory variables (Tsiripidis, 2023). Nonlinear relationship patterns can be identified by replac-

ing the linear predictors component in the GLM with the additive components. Hastie & Tibshi-

rani (1985) developed and improved the component in GLM using the additive approach, as 

clearly explained in Subchapter 2.4. GAM employ a series of smoothing splines to express the 

nonlinear relationship between the expected mean of responses and a set of predictors. Similar to 

GLM, the adaptation of the logit link function in GAM is known as Additive Logistic Regression 

(ALR). ALR is able to model more complex relationships than those observed in GLM (Daba et 

al., 2022). 

Several previous studies of land use change modelling, namely land use change in the Western 

Highlands of Vietnam using LR, in a tropical mountain landscape of Northern Ecuador using 

GAM and in Waterloo, Ontario, Canada, compare the performance of Markov Chain, LR, ALR 

and survival analysis (Siddik et al., 2022). However, the study area does not comprise peatlands, 

land change analysis is only undertaken in forest areas, together with agricultural and develop-

ment areas. In general, peatlands are terrestrial wetland ecosystems. Thus, the study aims to de-

velop a land use change model and predict the existing wetland in Kubu Raya Regency, West 

Kalimantan Province using LR from the GLM family, ALR as a component of GAM and Random 

Forest (RF), as a tree-based model that is also capable of identifying nonlinear relationships (Em-

manuel et al., 2023). 

Based on the forest and land fire early warning and detection system, the largest changes ensued 

in West Kalimantan due to the fires that occurred between 2014-2019. Various factors contribute 

to the forest and land fires in West Kalimantan, although the large area of peatlands, particularly 

in Kubu Raya Regency are the main potential for fire disasters. These peatlands are prone to fire 

caused by human activities to clear and dry the peatland area and then develop it into plantation 

areas (Gao et al., 2023). Numerous research has been carried out to prevent fire via a hydrological 

approach (Assidik et al., 2021), forest and fire hazards modelling employing the Hybrid Fire In-

dex and to provide awareness of community empowerment (Akbar et al., 2023). Therefore, this 

study uses another approach through land use change modelling to prevent and overcome peatland 

fires. The years of observation were conducted in 2009, 2015 and 2020. This research predomi-

nantly focuses on the class of wetlands in land cover because peatland comes under this particular 

classification. The comparative study on the performance model aims to ascertain the potential 

changes in wetlands, enabling the development of valuable planning recommendations. 

2. Research Methods 

2.1. Study Area 

The study area considered for this study was the regency of Kubu Raya. Kubu Raya is a regency 

resulting from the expansion of Pontianak Regency which was formed via Law No. 35 of 2007 

with an area of 6,985.20 km2. Kubu Raya is divided into nine sub-regencys, as shown in Figure 

1. Kubu Raya is located on the west of West Kalimantan Province. The study area is located 

between longitudes 108°35' - 109°58' E and latitudes 0°44' N - 1°01' S. The physical character of 



Forum Geografi, 37(2), 2023; DOI: 10.23917/forgeo.v37i2.23270  

Pradana et al.  Page 151   

the regency consists of land areas and coastal islands that include seas. Kubu Raya is also com-

posed of watersheds, namely Kapuas watershed in the downstream section, allowing many natural 

products from the upstream area of Kapuas River to flow into Kubu Raya. This allows the devel-

opment of processing industries from various natural product commodities in Kubu Raya along 

the Kapuas River. Kubu Raya has 39 small islands situated in the marine coastal area. These 

islands are predominantly inhabited by the community who work as fishermen. The population 

has limited access to public services due to unequal development in remote areas. 

 

Figure 1. Map of Kubu Raya Regency, the Study Area. 

2.2. Data 

The original LC map covers the entire region of Indonesia. In this case, the national map has to 

be cut out of one dataset using an administrative area in the study area (see the illustration below). 

Observations during this period indicated numerous changes in land cover, predominantly due to 

fires and other land use change activities across the wetlands. The LC MoEF map has a resolution 

of 100 x 100 m with a one-pixel unit equivalent to an area of one hectare (Gaur, 2023). The 

response variables applied in the land cover classification based on the PPIC documents are forest 

land (F), cropland (C), grassland (G), wetlands (W), settlements (S), as well as other lands (O). 

The occurrence of land use land cover change is caused by a combination of several driving fac-

tors triggering land change. The complexity, research site conditions and predetermined response 

variables are considered to establish the driving factors that are responsible for land use change 

or the explanatory variables determined based on the previous study listed in Table 1, along with 

the data sources used shown in Table 2. 
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Table 1. Explanatory Variables, 

Variable  Description Source 

X1 Distance to road (Ghosh, 2020; Baig, 2021) 

X2 Distance to river (Ghosh, 2020) 

X3 Slope (Baig, 2021) 

X4 Elevation (Baig, 2021) 

X5 Distance to lost wetlands  (Ghosh, 2020) 

X6 Population density  (Ghosh, 2020) 

X7 Distance to city  (Ghosh, 2020) 

Table 2. Data Used in This Research, 

Data Source  

LC 2009, 2015, 2020 LC MoEF  

Distance to road Maps of the Earth’s Surface (RBI) from BIG  

Distance to river RBI from Geospatial Information Agency (BIG) 

Slope SRTM-DEM from United States Geological Survey (USGS) 

Elevation SRTM-DEM from USGS 

Distance to lost wetlands  LC MoEF 2009 and 2015  

Population density  Central Bureau of Statistics (BPS) Kubu Raya 2010 

Distance to city  LC MoEF  

 
2.3. Classification of Land Cover Classes 

The MoEF data has 23 LC classes which are then regrouped into six LC classes as a response 

variable with reference to the definition provided by the Intergovernmental Panel on Climate 

Change (IPCC) (2003) document, specifically forest land (F), cropland (C), grassland (G), wet-

lands (W), settlements (S), and other lands (O). The reclassification step will assist in capturing 

changes in land cover by means of a more specific class with a focus on wetland cover as a class 

that is confirmed to have experienced significant changes. Table 3 presents the detail of the clas-

sification of the LC class. 

Table 3. Classification of LC. 

LC MoEF Code LC MoEF Class ID LC IPCC  

2001 Primary dryland forest 1 Forest land 

2002 Secondary dryland forest 1 Forest land 

2004 Primary mangrove forest 4 Wetlands 

20041 Secondary mangrove forest 4 Wetlands 

2005 Primary swamp forest 4 Wetlands 

20051 Secondary swamp forest 4 Wetlands 

2006 Plantation forest 1 Wetlands 

2007 Dry shrub 3 Grassland 

2010 Estate crop 2 Cropland 

2012 Settlement areas 5 Settlements 

2014 Bare ground 6 Other lands 

2500 Cloud 6 Other lands 

3000 Savanna and grasses 3 Grassland 

5001 Open water 4 Wetlands 

20071 Wet shrub 4 Wetlands 

20091 Pure dry agriculture 2 Cropland 

20092 Mixed dry agriculture 2 Cropland 

20093 Paddy field 2 Cropland 

20094 Fish pond/aquaculture 4 Wetlands 

20121 Port and harbour 5 Settlements 

20122 Transmigration areas 5 Settlements 

20141 Mining areas 5 Settlements 

50011 Open swamp 4 Wetlands 
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2.4. Logistic Regression 

LR is a component of GLM. GLM consists of a random component, linear predictors and a link 

function relating two components. In the LR model, the response variable or the random compo-

nent in the GLM, is assumed to have a binomial distribution. The natural parameter for the bino-

mial distribution is the log odds of response outcome 1, the supposed logit of 𝜋𝑖. The logit is the 

link function for binary random components.  

Logit link function provides the probability of land use land cover change; in this particular study 

the change in wetlands as a function of explanatory variables. The likelihood of land use change 

in every pixel is a function of the value of the explanatory variable at the same pixel. LR is em-

ployed to retrieve the variable conversion of wetlands in Kubu Raya Regency (Géant et al., 2023). 

The LR model (Equation 1) was formulated to be written as follows: 

𝜋(𝑥𝑖) =
𝑒𝛽0+𝛽1𝑋1𝑖+𝛽2𝑋2𝑖+𝛽3𝑋3𝑖+⋯+𝛽𝑛𝑋𝑛𝑖

1+𝑒𝛽0+𝛽1𝑋1𝑖+𝛽2𝑋2𝑖+𝛽3𝑋3𝑖+⋯+𝛽𝑛𝑋𝑛𝑖
   

(1) 

where: 

𝑛   = number of explanatory variables 

𝜋(𝑥𝑖)   = probability of each pixel for the occurrence of land cover types 

𝑋1, 𝑋2, … , 𝑋𝑛  = explanatory variables corresponding to the driving factors   

𝛽1, 𝛽2, … 𝛽𝑛 = regression coefficients 

The model can be transformed linearly where the link function 𝑓 transforms 𝑥𝑖 to the natural 

parameter known as the canonical link. 𝑓(𝑥𝑖) is the logit link function of 𝜋(𝑥𝑖), commonly termed 

logit transformation, as shown in Equation 2: 

𝑓(𝑥𝑖) = ln (
𝜋(𝑥𝑖)

1−𝜋(𝑥𝑖)
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑛𝑋𝑛  (2) 

The probability of the occurrence of wetlands can be determined at each pixel using the glm() 

command with the argument family=’binomial’ in R that is available in the lulcc package as a 

function to execute LR analysis.  

LR is a common method in predictive models used in land use change modelling. LR was initially 

applied in relation to deforested land in Massachusetts, land use change in Thailand by Buya 

(2020) and Vietnam by Huu et al., (2022). Based on the simulation results obtained by those 

studies, LR is reasonably accurate at predicting the quantity of land use changes, nevertheless the 

model depended on the quantity and completeness of the driving factors. 

 

2.5. Random Forest 

Random Forest (RF) is a combined tree method in which the number of trees produced forms a 

forest enabling the analysis to be performed on a group of these trees. RF uses the majority vote 

mechanism of the various trees created to solve classification or prediction problems. Girma et al. 

(2022) described RF on a dataset of size n with a number of q explanatory variables in the follow-

ing stages: 

i. Random sampling is performed by the bootstrap replacement of size n in each training 

dataset. 

ii. Trees are built up to their maximum size (without pruning). The tree's construction is 

conducted by randomly selecting variables where m explanatory variables are chosen 

with m < q. From the m explanatory variables, the best is selected as a divider and con-

tinues with separating into two new nodes. This process continues until the minimum size 

of observations in the node is reached.  

iii. Steps (i) and (ii) perform many L repetitions to obtain L decision trees. 

Similar to LR, the model is ready to use in lulcc and can be performed using the randomForest() 

command with the default set parameter for the number of trees to grow to the equivalent of 500. 

The number of variables randomly sampled as candidates at each split is equal to two.  

RF has been used in estimation and change in land cover under the urban area. The study com-

pared the machine learning algorithms RF, K-Nearest Neighbour (KNN) and Support Vector Ma-

chine (SVM) with advanced deep learning algorithms DeepLabv3+, the variant of Deep Neural 

Network (DNN). Concerning the performance evaluation of all the algorithms, specifically in the 

case of urban targets, the DeepLabv3+ recorded the highest overall pixel accuracy and F1 score 
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followed by RF, KNN and SVM. Among the traditional machine learning algorithms, RF classi-

fier exhibits a meaningful contribution from each of the classes but failed to map the river water 

accurately. 

2.6. Additive Logistic Regression 

The GAM (Generalised Additive Model) directly accommodates the existence of the non-linear 

effects of independent variables without having to explicitly understand the structure of these 

influences. GAM is the extension of GLM that replaces the linear predictors with an additive 

component. The ALR model is one of the families associated with GAM whose additive compo-

nents are adapted to the LR model to become an additive logistic model as follows (Equation 3): 

 

𝑔(𝑥𝑖) =  𝑙𝑛 (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
) = 𝑠0 + ∑ 𝑠𝑗

𝑝

𝑗=1

(𝑥𝑖𝑗); 𝑖 = 1, 2, … , 𝑛  (3) 

where 𝑠1(. ), 𝑠2(. ), … , 𝑠𝑗(. ) are smooth functions. Based on the above function, all values in the 

additive component 𝐺(𝑥) = 𝑠0 + ∑ 𝑠𝑗(𝑥) ∈ 𝑅
𝑝
𝑗=1  have a logit link function 𝑔(𝑥𝑖). Not unlike the 

GLM, the probability to predict wetlands in the GAM is defined in Equation 4 : 

 

𝜋(𝑥𝑖) =
𝑒𝐺(𝑥𝑖)

1+𝑒𝐺(𝑥𝑖)  
(4) 

Applied the backfitting algorithm together with the local scoring method to obtain the fit model 

and estimate the smooth function in a nonparametric fashion. The study on land use change mod-

elling using the GAM achieved a better performance than LR, Markov chain and survival analysis 

(Change et al., 2018). 

The ALR model is not supported in the current version of the lulcc package. In R, Huo et al., 

(2022) developed the ALR algorithm into the mgcv package. Thus, the fitting and predicting 

command in mgcv is modified via the source code. The probability of the occurrence of wetlands 

using ALR in R could be executed using gam() command with the argument family=’binomial’.  

2.7. Data Analysis Procedure 

Land use change modelling were conducted using the statistical program R using lulcc package 

that supports binary logistic regression and random forests (Jafarpour et al., 2022). The model has 

been modified and combined with GAM in R using mgcv package (Kumar et al., 2023). The 

procedure of analysis (Figure 2) in the study was as follows: 

1. Collect LC maps of 2009, 2015 and 2020 and spatial parameters. 

2. Produce land use change maps and transition probability matrices of land use changes to 

identify the largest dominant changes. 

3. Combine all the maps. 

4. Obtain 5% of the sample data using simple random sampling. The sample data will be 

compared with the overall data to identify the effect of the model for any type of data. 

5. Split the sample data into two pieces, 80% is used for the training dataset, whilst the 

remainder as the test dataset. 

6. Perform the LR, RF and ALR model using the training dataset. 

7. Evaluate the model using the test dataset based on the accuracy, F1 score and AUC-ROC 

(Area Under Curve-Receiver Operator Characteristic) metrics (Pontius & Parmentier, 

2014). 

8. Repeat the process in steps 5 to 7 for the overall data 10 times to evaluate the overall 

performance of the model in order that the average goodness-of-fit value of each combi-

nation of variables is obtained. 

9. Generate the prediction maps with the best model and validate by means of the actual 

map using the multi-label confusion matrix based on the performance value in step 7. 
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Figure 2. Analysis Process. 

3. Results and Discussion 

3.1. Land Cover Maps of Kubu Raya Regency 

Figure 3 illustrates the map of Kubu Raya Regency with the six LC classes comprising a total 

area of 853,451 hectares (ha) with dimensions of 1,024 x 1,375 pixels. The details of the total area 

represented by those classes were considered by calculating the number of pixels multiplied by 

the area each cell represents. The process to calculate the total area for each class was obtained 

automatically using the terra package in R. Based on the area calculation of the LC maps from 

2009–2020, wetlands and cropland dominated the regency of Kubu Raya. The area of LC in each 

observed year is presented in Table 4.  

In 2009, wetlands comprised up to 556,561 ha or 65.2% of the total area of Kubu Raya Regency 

whereas cropland covered 32.35%. Six years later in 2015, wetlands decreased dramatically to 

approximately 425,489 ha or 49.86% of Kubu Raya Regency. Simultaneously, cropland increased 

by roughly 10.68% to occupy an area of roughly 367,212 (43.03%). The decline in the area of 

wetlands continued to occur in the following five years to 2020, covering 396,542 ha or 46.46% 

of the area. The area of cropland in 2020 dominated to become 46.58% of the total area of Kubu 

Raya Regency. 

Forest land area increased appreciably between 2009–2020 owing to plantation forests in the LC 

MoEF being classified as forest land in the IPCC LC class. The development of settlements con-

tinued, rising to 10,524 ha in 2020, particularly in the area near Pontianak City. The land use 

category which changed dynamically comprised other lands. In 2009, it occupied approximately 

0.99% of Kubu Raya Regency, although by 2015, it had increased to roughly 2.58%. Concerning 

grassland, only minimal changes were observed from 2009 to 2020.         

Table 4. The Area of LC in Kubu Raya Regency. 

No LC 
2009 2015 2020 

ha % ha % ha % 

1 Forest land 6,691 0.78 33,280 3.90 37,754 4.42 

2 Cropland 276,056 32.35 367,212 43.03 397,505 46.58 

3 Grassland 1,975 0.23 1,404 0.16 1,489 0.17 

4 Wetlands 556,461 65.20 425,489 49.86 396,542 46.46 

5 Settlements 3,849 0.45 4,027 0.47 10,524 1.23 

6 Other lands  8,419 0.99 22,039 2.58 9,637 1.13 
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Figure 3. Land Cover Maps of Kubu Raya Regency in (a) 2009 (b) 2015 (c) 2020. 

 

 

Figure 4. Explanatory Variable Maps. Distance to roads, distance to rivers, slope, elevation, dis-

tance to lost wetlands, population density and distance to city. 
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3.2. Spatial Data Layers of The Independent Variables  

The explanatory variable map employs maps from several sources that have been clipped with the 

boundaries of Kubu Raya Regency and adjusted to the dimensions in the LC MoEF map. The 

distance to road variable is generated from arterial roads, local roads and collector roads which 

are used as driving factors to explain that the closer land use is to the road, the faster land use 

changes occurred. Distance to the river taken from the main river, population density and distance 

to the city also reveal something similar; that the closer the land use is to that aspect, the faster 

the land use changes occurred, considering the spatial proximity of roads and cities as important 

influencing factors (Ghosh et al., 2020).  

The slope and elevation from the Landsat DEM image are employed with the assumption that 

there is a strong relationship with land use land cover changes. Baig et al. (2021) included slope 

because the altitude dynamic is frequently associated with anthropogenic activity. The variable 

distance to the lost wetlands is obtained from the transition of reduced wetland area due to land 

use change activities in 2009-2015. Proximity to lost wetlands is essential for determining the 

vulnerable parts of a wetland area (Ghosh et al., 2020). The explanatory variables maps are shown 

in Figure 4.  

3.3. Land Use Change 2009-2015  

Identification of land use change was conducted by constructing a transition matrix of land use 

change in the 2009-2015 period to observe the pattern of dominant changes that occurred at those 

two points of the year. Based on the land use change transition area matrix, 29 transitions occurred 

during this specific period (Table 5). This transition also confirms that the dominant change oc-

curred from wetlands to other LC with significant changes observed in 91,545 ha of cropland, 

23,595 ha of forest land, and 16,556 ha of other lands. The study conducted by Yang et al. (2023) 

identified that the land use change activities originated from human activities in an attempt at land 

use utilisation which is an essential factor in the occurrence of forest and land fires.   

Table 5. Transition Area Matrix 2009-2015 (in hectares). 

Land Cover 2015 

2009 F C G W S O 

Forest land (F) 6.230 126 70 242 0 23 

Cropland (C) 2.188 272.110 34 192 356 1.176 

Grassland (G) 392 125 1.149 287 0 22 

Wetlands (W) 23.595 91.545 132 424.586 46 16.557 

Settlements (S) 0 205 19 0 3.625 0 

Other lands (O) 875 3.101 0 182 0 4.261 

 

3.4. Land Use Change Modelling 

Construction of the land use change model begins by taking a 5% sample point of 42,673 points 

from the entire area of 2009 LC data regularly for each land cover class to optimise the time spent 

in building the model compared to using all LC data as a whole, with the objective that the model 

does not tend to predict most of the LC class. Subsequently, the extraction of values on the LC 

map and each explanatory variable map is performed based on the coordinates of the sample 

points that have been previously distributed to form the dataset. The dataset is divided into training 

data comprising roughly 80% of the sample data or 34,140 points, with the remaining 8,533 points 

as test data.  

The understanding of land use change models in relation to LR, RF, and ALR was conducted on 

training data and subsequently testing the results on each model with test data. The process is 

repeated 10 times to obtain 10 goodness-of-fit values. In addition to the sample data, all of the 

above steps are also applied to the entire observation dataset (Salmona et al., 2023). 

Table 6 presents the comparison of the accuracy and F1 scores of the LR, RF and ALR models in 

5% of the sample data and the entire data. The RF model performed better than the LR and ALR 

models on the 5% sample data or when using all the data, on average. This is denoted by a high 

accuracy value of 0.950 for the sample data followed by 0.952 for all data and an F1 score of 

0.962 followed by 0.954 for all data in the RF model compared to the other two models. 

The accuracy and F1 scores between models are also displayed visually using the boxplot in Fig-

ure 5 and Figure 6. The goodness-of-fit model for the 5% sample data has a marginally broader 

interval than the overall data. 
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Table 6. Comparison of Goodness-of-fit Value for LR, RF and ALR. 

Goodness-of-fit 
LR RF ALR 

5% 100% 5% 100% 5% 100% 

Accuracy 0,856 0,854 0,950 0,952 0,880 0,878 

F1 0,892 0,890 0,962 0,964 0,909 0,907 

AUC 0,899 0,898 0,990 0,991 0,937 0,936 

 

 

Figure 5. Accuracy between Models. 

 

Figure 6. F1 Score between Models. 

The classification capability of each model in determining wetland and non-wetland classes is 

also measured by the ROC curve, which is the curve between the true positive rate and the false 

positive rate. The model has good classification ability if the ROC curve line is above the diagonal 

line with the area under the curve (AUC) close to 1. In Figure 7, RF appears to deliver the best 

performance in both datasets with the curve line furthest from the diagonal line and AUC values 

of 0.990 and 0.991. Subsequently, ALR exhibited AUC values of 0.937 and 0.936 in both datasets, 

while LR, identified as the model with the lowest AUC values, recorded 0.899 and 0.989 in the 

respective datasets. The results of the ROC prove that the RF provided good prediction results in 

determining the changes of each pixels into wetland rather than non-wetland (Salako et al., 2023). 
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Figure 7. ROC curves between models for 5% and 100% data. 

3.5. Probability Map 

The probability map between models is a map where the probability value of a pixel develops into 

a class of wetlands marked with a lighter colour with a value close to 1. The probability of be-

coming a class of non-wetlands is darker in colour with a value close to 0. The actual wetland 

covered an area of 556,461 ha in 2009.  

Based on the prediction results in the map, the total area of wetlands in the RF model is closer to 

its value with an actual total area of approximately 557,871 ha, while the ALR is 565,154 ha and 

the LR is 574,144 ha. All LC classes are predicted by inputting all 2020 datasets as test data into 

the RF model, as the model that produces the best performance. Figure 8, presents probability 

maps for the classes of forest land, cropland, grassland, wetlands, settlements and other lands, 

respectively. 

 

Figure 8. Probability Maps for All Land Cover Classes. (a) Forests, (b) Cropland, (c) Grassland, (d) Wet-

lands, (e) Settlements, and (f) Other lands. 



Forum Geografi, 37(2), 2023; DOI: 10.23917/forgeo.v37i2.23270  

Pradana et al.  Page 160   

Figure 9 illustrates the prediction map of the best model by overlaying all prediction maps for 

each LC. The predicted area of wetlands from the result in 2020 is 391,723 ha, a reduction in 

contrast to the actual wetland area of 396,542 ha. 

 

Figure 9. Prediction Map of the Best Model. 

3.6. Discussion 

The presented study seeks to answer the question: what is the overall accuracy of different statis-

tical methods in predicting the potential changes from class wetlands to non-wetlands? (Zarandian 

et al., 2023). To answer this question, three different conceptual approaches to modelling land use 

change, i.e., parametric model, tree-based model and nonparametric model as represented by Lo-

gistic Regression (LR), Random Forest (RF) and Additive Logistic Regression (ALR), are devel-

oped, quantified and compared for accuracy. These approaches were used to generate models of 

six different land cover classes and were tested using 2020 data for the Kubu Raya regency, West 

Kalimantan. The results demonstrate that overall accuracy was highest for RF followed by ALR 

and LR either with a small sample size or full data.  

LR and ALR that are used to model land use change were designed to represent one-to-one land 

use change, with only two classes comprising wetlands to non-wetlands and non-wetlands to wet-

lands (Ren et al., 2023). Although RF has the ability to address the multiclass classification prob-

lem, the execution performed remains the same as the binary classification. To develop the pre-

diction map, all the combinations of two classes have been executed allowing the six probability 

maps to be established. Based on the ROC curves as a metric evaluation to the binary classification 

problem, yet again, RF outperformed the other modelling approaches (Penny et al., 2023). 

The utilisation of LR as a classification model presents several challenges because it does not 

require complex parameters and a specific model treatment. The execution time in LR is much 

faster than the other two models, with each iteration only lasting a few seconds. However, spatial 

autocorrelation in the error terms of the LR causes bias in the standard errors of the parameter 

estimates. Spatial autocorrelation in spatial analysis can affect the model for the reason that the 

pixel value can be predicted by its neighbours (Karasiak et al., 2022). This phenomenon can also 

be found in several studies (Baig et al., 2021; Buya, 2020; Gaur, 2023). A simple strategy to 
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reduce the impact of spatial autocorrelation is drawing a random sample size of the data to fit the 

predictive model (Liu et al., 2023). 

In contrast, the run time for the ALR and RF lasted half an hour for each iteration in the simulation 

class. In the study completed by Robinson (2018), the ALR took over eighty-five minutes to per-

form the simulation model due to the iteration in the back-fitting of smoothing functions. In R, 

smoothing functions have to be initialised for each selected explanatory variable which has been 

identified as a nonlinear relationship to perform the classification model using ALR (Aguilera et 

al., 2023). The response variable also has to be set as a factor data type or categorical data. The 

smoothing parameters estimation in this research applied the default method, Generalised Cross 

Validation (GCV). Guarderas et al. (2022) employed beta regression to predict the model and 

Restricted Maximum Likelihood (REML) as an estimation method for smoothing parameters. The 

conservative results from the treatment of ALR based on the research explained between 21% to 

42% of the variation of the distinct land cover transition in the study region. Moreover, the hy-

perparameter in RF was not considered in this study (Xia et al., 2023). The number of trees to 

grow and variables as candidates at each split was set to default, 500 and 2, respectively. Never-

theless, the prediction result using the RF model was more accurate than LR and ALR. RF is the 

best recommendation for conducting land use change analysis, although it does not rule out the 

possibility that ALR can also be used by considering several parameters to improve the model 

(Ren et al., 2023). 

Between 2009 to 2015, it was observed that wetlands decreased dramatically in covered areas, as 

a result of cropland taking over wetlands. Due to this conversion, cropland witnessed substantial 

expansion, accompanied by significant changes in forest land. Sequestration, the process involv-

ing changes from the low carbon stocks area to the high carbon stocks area, is expected to reduce 

the emissions. However, forest cover used in this study includes the production forest, for in-

stance, industrial plantation forest (Raihan et al., 2023). A different finding is that the pattern of 

changes in wetlands tended to occur in the locations where the wetlands were close to the road. It 

indicated that distance to road is a significant variable in assessing the changes to non-wetlands. 

The second variable that plays an important role in this study was elevation. The relevant study 

incorporating wetlands as part of the analysis is the wetland conversion risk assessment of Kolkata 

Timur, India. This study determined that areas adjacent to megacities and other municipality areas 

and the highest population density were identified as high-risk zones concerning wetlands con-

version (Seena et al., 2023). The other land use simulation for Selangor, Malaysia (Baig et al., 

2021), concluded that land use changes are typically influenced by population and demand 

growth. 

The performance of the model in detecting wetlands is a notable component of this study. How-

ever, it is essential to recognise and address certain limitations. Focusing only on the analysis of 

the response variable, without taking into account the effect of a set of predictive variables may 

cause misclassification. ALR is expected to perform better than LR and RF but the minimal design 

features and parameters may not maximise the ability of the model to classify. Future research 

will seek to determine the other related factors or covariates, such as weather, hydrological and 

socio-economic aspects (Verburg et al. 2019). Providing a more detailed classification of LC clas-

ses would offer a more accurate representation of the existing conditions in Kubu Raya. Notwith-

standing that the one-to-one model or single transition can reveal the effects of predictors specif-

ically, the performance of the many-to-one land use change model can enrich the output results 

and reduce the model’s simulation time (Akbar et al., 2023). It would be worth investigating and 

implementing a variety of statistical machine learning or deep learning approaches in the lulcc 

package in the future, such as the mixed effects model, ensemble learning or a variant of neural 

networks with several tuning hyperparameters to obtain the optimal performance. The final step 

is to validate the model using the Total Operating Characteristic (TOC) created by Liu et al. 

(2021) to substitute the popular ROC that claims to offer more information and a distinct inter-

pretation.     

4. Conclusion 

From 2009 to 2020, Kubu Raya Regency was primarily characterised by wetlands and cropland, 

with wetlands occupying virtually half of Kubu Raya Regency. During that period, the largest 

transformation occurred in cropland with greater potential. The results of predictive land use 

change on the wetlands class in Kubu Raya Regency reveal that the Random Forest model pro-

vides the best average goodness-of-fit model compared to the Logistic Regression and Additive 

Logistic Regression models. The model with 5% sample point data does not produce a signifi-

cantly different goodness-of-fit model compared to using all spatial data in Kubu Raya Regency. 

By considering the findings obtained by this research, RF is expected to be able to predict possible 
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changes in wetlands. Furthermore, synchronised spatial plans may prevent detrimental land use 

change and may support the sustainable peatland restoration and management in Kubu Raya Re-

gency. 
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