GIS-based Flood Susceptibility Mapping Using Overlay Method in Central Sulawesi

Rheinhart Christian Hutauruk(1*), Solih Alfiandy(2), Hermanto Asima Nainggolan(3), Mas Harya Fitra Yudo Raharjo(4)

(1) Global Atmosphere Watch Station, Indonesian Agency for Meteorology Climatology and Geophysics, Area Perkantoran Bandar Udara Sis Al-Jufri, Palu 94231
(2) Global Atmosphere Watch Station, Indonesian Agency for Meteorology Climatology and Geophysics, Area Perkantoran Bandar Udara Sis Al-Jufri, Palu 94231
(3) Global Atmosphere Watch Station, Indonesian Agency for Meteorology Climatology and Geophysics, Area Perkantoran Bandar Udara Sis Al-Jufri, Palu 94231
(4) Global Atmosphere Watch Station, Indonesian Agency for Meteorology Climatology and Geophysics, Area Perkantoran Bandar Udara Sis Al-Jufri, Palu 94231
(*) Corresponding Author

Abstract

Central Sulawesi is the largest province on the Sulawesi island with a dominant sloping topographic condition and has a variety of soil types, flow density, land use and rainfall that makes this region vulnerable to flooding. Flooding is a hydrometeorological disaster that will adversely affect aspects of human life such as social and economic activities in an area because it can cause environmental damage, casualties and disrupt economic activity. Because of its enormous impact, the purpose of this research study is to find out areas in the province of Central Sulawesi that are suscept to flooding. The method used in this research study is scoring the classification of flood hazard parameters such as slope level, elevation, soil type, rainfall, land use and flow density which are then overlay using ArcGis 10.2.2. The results obtained that the province of Central Sulawesi has three categories of areas suscept to flooding with a low category 6630.3 km2, moderate 46081.9 km2 and high category 7104.7 km2. Based on the results and discussion, it can be concluded that Central Sulawesi province has a dominant level of vulnerability which is moderate.

Keywords

Flood Susceptibility; Central Sulawesi; Mapping; Scoring; Overlay

Full Text:

HTML PDF

References

Adi, S. (2013). Karakterisasi bencana banjir bandang di Indonesia. Jurnal Sains Dan Teknologi Indonesia, 15(1).

Akhbar, R. K. (2019). Analisis Spasial Rawan Banjir Terhadap Dampak Lingkungan Kabupaten Sigi Provinsi Sulawesi Tengah. Jurnal Warta Rimba, 7(4), 172–180.

Al-Zahrani, M., Al-Areeq, A., & Sharif, H. O. (2017). Estimating urban flooding potential near the outlet of an arid catchment in Saudi Arabia. Geomatics, Natural Hazards and Risk, 8(2), 672–688.

Arief, S. M., Siburian, R. H., & Wahyudi, W. (2019). Tingkat Kerentanan Banjir Kota Sorong Papua Barat. Median: Jurnal Ilmu Ilmu Eksakta, 11(2), 23–27.

Arifin, Y. I., & Kasim, M. (2012). Penentuan Zonasi Daerah Tingkat Kerawanan Banjir di Kota Gorontalo Propinsi Gorontalo untuk Mitigasi Bencana. Sainstek, 6(06).

CNN. (2019). Banjir bandang kembali terjang sigi dua orang tewas, https://www.cnnindonesia.com/nasional/20191212203208-20-456511/banjir-bandang-kembali-terjang-sigi-dua-orang-tewas (21 March 2020).

Darmawan, K., & Suprayogi, A. (2017). Analisis Tingkat Kerawanan Banjir Di Kabupaten Sampang Menggunakan Metode Overlay Dengan Scoring Berbasis Sistem Informasi Geografis. Jurnal Geodesi Undip, 6(1), 31–40.

Haghizadeh, A., Siahkamari, S., Haghiabi, A. H., & Rahmati, O. (2017). Forecasting flood-prone areas using Shannon’s entropy model. Journal of Earth System Science, 126(3), 39.

Handoyo, G., Suryoputro, A. A. D., & Subardjo, P. (2016). Genangan banjir rob di Kecamatan Semarang Utara. Jurnal Kelautan Tropis, 19(1), 55–59.

Harini, R., Susilo, B., Sarastika, T., Supriyati, S., Satriagasa, M. C., & Ariani, R. D. (2017). The Survival Strategy of Households Affected by Tidal Floods: The Cases of Two Villages in the Pekalongan Coastal Area. Forum Geografi, 31(1), 163–175.

Haryani, N. S., Zubaidah, A., Dirgahayu, D., Yulianto, H. F., & Pasaribu, J. (2012). Model Bahaya Banjir Menggunakan Data Penginderaan Jauh Di Kabupaten Sampang (Flood Hazard Model Using Remote Sensing Data In Sampang District). Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 9(1).

Indawati, L. (2015). Analisis Tingkat Kerawanan Banjir Dan Persepsi Masyarakat Terhadap Upaya Pengurangan Dampak Banjir Di Kecamatan Baureno Kabupaten Bojonegoro (Implementasinya sebagai sumber belajar siswa kelas 7 SMPN 2 Baureno, pada Topik: Keadaan alam dan aktifitas pendu. UNS (Sebelas Maret University).

Mala, B. K. S., Moniaga, I. L., & Karongkong, H. H. (2017). Perubahan Tutupan Lahan Terhadap Potensi Bahaya Longsor Dengan Pendekatan Sistem Informasi Geografis Di Kolonodale Kabupaten Morowali Utara. Spasial, 4(3), 155–166.

Marfai, M. A. (2004). Flood Modelling of Banjir Kanal Barat (Integration of Hydrology Model and GIS). Forum Geografi, 17(1).

Maryono, A., & Prajarto, N. (2005). Menangani banjir, kekeringan, dan lingkungan. Gadjah Mada University Press.

Matondang, J. P., Kahar, S., & Sasmito, B. (2013). Analisis Zonasi Daerah Rentan Banjir Dengan Pemanfaatan Sistem Informasi Geografis (Studi Kasus: Kota Kendal dan Sekitarnya). Jurnal Geodesi Undip, 2(2).

Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali, A. H. B. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 1080–1102.

Mukherjee, F., & Singh, D. (2019). Detecting flood prone areas in Harris County: A GIS based analysis. GeoJournal, 1–17.

Nugroho, S. P. (2002). Evaluasi Dan Analisis Curah Hujan Sebagai Faktor Penyebab Bencana Banjir Jakarta. Jurnal Sains & Teknologi Modifikasi Cuaca, 3(2), 91–97.

Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1), 42–70.

Riyanto, D., Wulandari, C., Darmawan, A., & Setiawan, A. (2019). Analisis Spasial Sebaran Kopi Codot menggunakan Sistem Informasi Geografis. Paper Dipresentasikan Dalam Smeinar Nasional Biologi 4 Tahun 2019 Di Bandung Tanggal 25 April 2019.

Rosyidie, A. (2013). Banjir: fakta dan dampaknya, serta pengaruh dari perubahan guna lahan. Journal of Regional and City Planning, 24(3), 241–249.

Shafapour Tehrany, M., Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538–1561.

Solahuddin, M. (2014). SIG Untuk Memetakan Daerah Banjir Dengan Metode Skoring Dan Pembobotan (Studi Kasus Kabupaten Jepara). Jepara: Udinus.

Tawil, S., Sukiyah, E., Rosana, M. F., & Muslim, D. (2019). Peran Karakteristik Morfometri Daerah Aliran Sungai Buol Terhadap Banjir Di Wilayah Bukal, Tiloan, Momunu Dan Biau, Provinsi Sulawesi Tengah. Bulletin of Scientific Contribution: Geology, 17(2), 143–152.

Utama, A. G., Wijaya, A. P., & Sukmono, A. (2016). Kajian Kerapatan Sungai Dan Indeks Penutupan Lahan Sungai Menggunakan Penginderaan Jauh (Studi Kasus: DAS Juana). Jurnal Geodesi Undip, 5(1), 285–293.

Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2017). Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: a case study of Poisar River basin, Mumbai, India. Natural Hazards, 87(3), 1267–1283.

Article Metrics

Abstract view(s): 949 time(s)
HTML: 1125 time(s) PDF: 547 time(s)

Refbacks

  • There are currently no refbacks.