Comparison of Land Surface Temperature During and Before the Emergence of Covid-19 using Modis Imagery in Wuhan City, China

Hamim Zaky Hadibasyir(1*), Seftiawan Samsu Rijal(2), Dewi Ratna Sari(3)

(1) Faculty of Geography, Universitas Muhammadiyah Surakarta, 57162 Surakarta City, Indonesia
(2) Marine Science Department, Faculty of Fisheries and Marine Science, Universitas Brawijaya, 65145 Malang City, Indonesia
(3) World Resources Institute (WRI) Indonesia, 12170 South Jakarta City, Indonesia
(*) Corresponding Author

Abstract

Coronavirus disease (COVID-19) was firstly identified in Wuhan, China. By 23rd January 2020, China’s Government made a decision to execute lockdown policy in Wuhan due to the rapid transmission of COVID-19. It is essential to investigate the land surface temperature (LST) dynamics due to changes in level of anthropogenic activities. Therefore, this study aims (1) to investigate mean LST differences between during, i.e., December 2019 to early March 2020, and before the emergence of COVID-19 in Wuhan; (2) to conduct spatio-temporal analysis of mean LST with regards to lockdown policy; and (3) to examine mean LST differences for each land cover type. MODIS data consist of MOD11A2 and MCD12Q1 were employed. The results showed that during the emergence of COVID-19 with lockdown policy applied, the mean LST was lower than the mean LST of the past three years on the same dates. Whereas, during the emergence of COVID-19 without lockdown policy applied, the mean LST was relatively higher than the mean LST of the past three years. In addition, the mean LST of built-up areas experienced the most significant differences between during the emergence of COVID-19 with lockdown policy applied in comparison to the average of the past three years.

Keywords

urban climate; Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2); Wuhan’s lockdown; anthropogenic activities; remote sensing

Full Text:

HTML PDF

References

Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1-8. doi:10.1155/2016/1480307

Buyantuyev, A., & Wu, J. (2010). Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 25(1), 17-33. doi:10.1007/s10980-009-9402-4

China Meteorological Administration (n.d.). Climate in China. Retrieved from http://data.cma.cn/data/weatherBk.html [26th April 2020]

Eleftheriou, D., Kiachidis, K., Kalmintzis, G., Kalea, A., Bantasis, C., Koumadoraki, P., . . . Gemitzi, A. (2018). Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece - climate change implications. Science of The Total Environment, 616-617, 937-947. doi: 10.1016/j.scitotenv.2017.10.226

Esfandiari, S. (2020). These are all the companies who have shut down operations in China over the deadly Wuhan coronavirus outbreak. Retrieved from https://www.businessinsider.sg/wuhan-coronavirus-which-companies-shut-down-operations-move-employees-2020-1?r=US&IR=T [26th April 2020]

Gartland, L. (2011). Heat islands: understanding and mitigating heat in urban areas. London: Earthscan.

Hulley, G. C., Hughes, C. G., & Hook, S. J. (2012). Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data. Journal of Geophysical Research: Atmospheres, 117(D23). doi:10.1029/2012JD018506

Jensen, J. R. (2014). Remote sensing of the environment: an earth resource perspective. Essex: Pearson.

Jensen, J. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. One Lake Street Upper Saddle River, NJ: Prentice Hall.

Ke, X., Zheng, W., Zhou, T., & Liu, X. (2017). A CA-based land system change model: LANDSCAPE. International Journal of Geographical Information Science, 31(9), 1798-1817. doi:10.1080/13658816.2017.1315536

Kong, W.-H., Li, Y., Peng, M.-W., Kong, D.-G., Yang, X.-B., Wang, L., & Liu, M.-Q. (2020). SARS-CoV-2 detection in patients with influenza-like illness. Nature Microbiology, 5(5), 675-678. doi:10.1038/s41564-020-0713-1

Kuo, L. (2020). Coronavirus: China bars 11m residents from leaving city at centre of outbreak. Retrieved from https://www.theguardian.com/world/2020/jan/22/coronavirus-china-measures-rein-spread-mutate-disease-death-toll [28th April 2020]

Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., & Khosrawipour, T. (2020). The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. Journal of Travel Medicine. doi:10.1093/jtm/taaa037

Lee, D. O. (1984). Urban climates. Progress in Physical Geography: Earth and Environment, 8(1), 1-31. doi:10.1177/030913338400800101

Li, L., Tan, Y., Ying, S., Yu, Z., Li, Z., & Lan, H. (2014). Impact of land cover and population density on land surface temperature: case study in Wuhan, China. Journal of applied remote sensing, 8(1), 084993. doi: 10.1117/1.JRS.8.084993

Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., & Turner, B. L. (2016). Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 174, 233-243. doi: 10.1016/j.rse.2015.12.022

Liu, J., Zhou, J., Yao, J., Zhang, X., Li, L., Xu, X., . . . Zhang, K. (2020). Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Science of The Total Environment, 726, 138513. doi: 10.1016/j.scitotenv.2020.138513

McNeil, S. (2020). Wuhan Celebrates the End of Its 76-Day Coronavirus Lockdown Retrieved from https://time.com/5816938/wuhan-coronavirus-lockdown-ends/ [27th April 2020]

Meng, C., & Dou, Y. (2016). Quantifying the anthropogenic footprint in eastern china. Scientific Reports, 6, 24337. doi:10.1038/srep24337

NASA DAAC. (2020). Terra vs. Aqua Retrieved from https://nsidc.org/data/modis/terra_aqua_differences [28th April 2020]

Ndossi, M. I., & Avdan, U. (2016). Application of Open Source Coding Technologies in the Production of Land Surface Temperature (LST) Maps from Landsat: A PyQGIS Plugin. Remote Sensing, 8(5). doi:10.3390/rs8050413

Offerle, B., Grimmond, C. S. B., Fortuniak, K., Kłysik, K., & Oke, T. R. (2006). Temporal variations in heat fluxes over a central European city centre. Theoretical and Applied Climatology, 84(1), 103-115. doi:10.1007/s00704-005-0148-x

Qin, A., & Hernández, J. C. (2020). China Reports First Death from New Virus - The New York Times. Retrieved from https://www.nytimes.com/2020/01/10/world/asia/china-virus-wuhan-death.html [25th April 2020]

Shahmohamadi, P., Che-Ani, A. I., Maulud, K. N. A., Tawil, N. M., & Abdullah, N. A. G. (2011). The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Studies Research, 2011, 1-9. doi:10.1155/2011/497524

Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society, 32, 100-114. doi: 10.1016/j.scs.2017.02.018

Sulla-Menashe, D., & Friedl, M. A. (2018). User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product [Product Specification Guide]. Retrieved from https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf

Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., . . . Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 726, 138540. doi: 10.1016/j.scitotenv.2020.138540

Walawender, J. P., Szymanowski, M., Hajto, M. J., & Bokwa, A. (2014). Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data. Pure and Applied Geophysics, 171(6), 913-940. doi:10.1007/s00024-013-0685-7

Wan, Z. (2013). Collection-6 MODIS Land Surface Temperature Products Users' Guide [Product Specification Guide]. Retrieved from https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf [28th April 2020]

Wang, Y., Zhan, Q., & Ouyang, W. (2017). Impact of urban climate landscape patterns on land surface temperature in wuhan, china. Sustainability, 9(10), 1700. doi:10.3390/su9101700

World Health Organisation. (2020a). Coronavirus disease (COVID-19) outbreak. Retrieved from https://www.who.int/westernpacific/emergencies/covid-19 [28th April 2020]

World Health Organisation. (2020b). Novel Coronavirus (2019-nCoV) Situation Report 1 - 21 January 2020 [Report]. Retrieved from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4 [26th April 2020]

Yoo, C., Im, J., Park, S., & Cho, D. (2017). 기계학습 기반 상세화를 통한 위성 지표면온도와 환경부 토지피복도를 이용한 열환경 분석: 대구광역시를 중심으로. [Thermal Characteristics of Daegu using Land Cover Data and Satellite-derived Surface Temperature Downscaled Based on Machine Learning]. Korean Journal of Remote Sensing, 33(6_2), 1101-1118. doi:10.7780/KJRS.2017.33.6.2.6

Zhan, Q., Meng, F., & Xiao, Y. (2015). Exploring the relationships of between land surface temperature, ground coverage ratio and building volume density in an urbanized environment. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 255-260. doi:10.5194/isprsarchives-XL-7-W3-255-2015

Article Metrics

Abstract view(s): 2748 time(s)
HTML: 1098 time(s) PDF: 990 time(s)

Refbacks

  • There are currently no refbacks.