Spatial Analysis on Tsunami Predictions in Pandeglang Regency

Della Ayu Lestari, Novi Sofia Fitriasari, Taufiq Ejaz Ahmad, Amien Rais, Dhea Rahma Azhari



Pandeglang Regency is an area that has the potentiel to be hit by tsunamis. The plate subduction paths of Indo-Australia and Anak Krakatau Volcano make Pandeglang Regency a region with a high tsunami potential. One step that can be taken to overcome and minimize losses is to do spatial planning to protect it against potential tsunami damage. This research aimed to evaluate the spatial area of Pandeglang Regency based on the identification of potential tsunami hazards.  The concept of modelling the tsunami inundation height developed by Berryman and based on Head Regulation No.4 of 2012 of the Indonesian National Board for Disaster Management has been used to identify potential tsunami hazards. The modelling was carried out by calculating the potential distribution of tsunami wave heights in coastal areas.  Three scenarios were used to estimate the distribution. The results showed that the first scenario predicted a maximum tsunami height   of 7.5 meters above sea level with the furthest tsunami inundation reaching 1,700.12 meters. Second scenario predicted maximum height of 15 meters, with the furthest tsunami inundation reaching 3,384.62 meters. Meanwhile, the last scenario was able to predict a height of 20 meters and showed the furthest tsunami inundation reaching 5.155,11 meters. These results proved that in all scenarios, the widest inundation would occur in Panimbang Regency. This is due to the relatively small variations in roughness and slope of the surface. The same condition also occurs in the last two scenarios, in which Sumur District was the area most ffected. Therefore, the spatial plan of Pandeglang Regency needs to be evaluated and the function of residential area changed to reduce and prevent large losses.


Geography Information System; residential area; spatial analysis; tsunami; tsunami inundation

Full Text:



Alhamidi, Pakpahan, V. H., & Simanjuntak, J. E. S. (2018). Analysis of tsunami disaster resilience in Bandar Lampung Bay Coastal Zone. IOP Conference Series: Earth and Environmental Science, 158, 12037.

Azis, M. F. (2006). Gerak Air di Laut. Oseana, 31(4), 9-21.

Badan Nasional Penanggulangan Bencana. (2011). Panduan Nasional Pengkajian Risiko Bencana Tsunami. Jakarta: Badan Nasional Penanggulangan Bencana.

Berryman, Kelvin. (2006). Review of Tsunami Hazard and Risk in New Zealand. New Zealand: Institute of Geological and Nuclear Sciences, pp. 64.

Damanik, M. R. S., Nurman A, Restu, R., & Berutu,N. (2018). Tsunami Risk Analysis With Run-up Variation Scenario Based On Modeling Of Geographic Information System On Sibolga City North Sumatera. Int. J. Eng. Technol.

Domroes, M. (2006). The Tsunami Catastrophe in Sri Lanka - Its Dimension, Relief, and Rehabilitation. New Delhi: Mosaic Books.

Farahdita, W, L & H, S, R, Siagian. (2019). Analysis of The Area Affected by The Tsunami in Pandeglang, Banten: A Case Study of The Sunda Strait Tsunami. IOP Conf. Series: Earth and Environmental Science 429.

Fauzi, Y., & Mayasari, Z. M. (2014). The Run Up Tsunami Modeling in Bengkulu Using the Spatial Interpolation of Kriging Technique.

Giachetti, T., Paris, R., Kelfoun, K., & Ontowirjo, B. (2012). Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia. Geological Society, London, Special Publications, 361(1), 79-90.

Gouhier, M., & Paris, R. (2019). SO2 and Tephra Emissions During the December 22, 2018 Anak Krakatau Flank-Collapse Eruption. Volcanica, 2(2), 91–103.

Huda, A. N., Suryoputro, A. A. D., & Subardjo, P. (2015). Studi Pola Transformasi Gelombang di Perairan Kota Tegal. Journal of Oceanography, 4(1), 341-349.

Horspool, N., Pranantyo, I. R., Griffin, J., Latief, H., Natawidjaja, D., Kongko, W., ... & Thio, H. K. (2013). A National Tsunami Hazard Assessment for Indonesia. Australia–Indonesia Facility for Disaster Risk Reduction, Australian Government Department of Foreign Affairs and Trade, Canberra.

Ji, Y, Sumantyo, J, T, S., Chua, M, Y., & Waqar, M, M. (2018). Earthquake/Tsunami Damage Assessment for Urban Areas Using Post-Event Polsar Data. Remote Sens. 2018, 10, 1088.

Latief, Hamzah, Puspito, Nanang, & Rumuhiko, Imamura. (2000). Tsunami Catalog and Zones in Indonesia. Journal of Natural Disaster Science, Vol. 22, Number 1, pp. 543.

Lestari, Della Ayu & Budiman Sakti. (2020). Social Vulnerability to Earthquake Hazard at Pringsewu District, Lampung Province. IOP Conference Series: Earth and Environmental Science 561 (1), 012046

Majid, R. N., & Nurlambang, T. (2020). Pandeglang Regency Spatial Evaluation Based on Tsunami Hazard Potential. In E3S Web of Conferences (Vol. 156, p. 04010). EDP Sciences.

Sari, D. A. P., & Soesilo, T. E. B. (2019). Measuring Community Resilience to The Tsunami Disaster Study of Sukarame Village, Carita District, Pandeglang Regency. IOP Conf. Series: Earth and Environmental Science 448.

TW, Yan., M. Iskandarsyah, Lia, Djurnaliah, Yoga, A., Sendjaja. (2016). Kronologi Kejadian Tsunami Krakatau Tahun 1883 di Semenanjung Ujung Kulon. Seminar Nasional Ke-III Fakultas Teknik Geologi Universitas Padjadjaran.

Walter, T. R., Haghighi, M. H., Schneider, F. M., Coppola, D., Motagh, M., Saul, J. (2019). Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 10:4339

Widiyantoro, S. E. Gunawan, A. Muhari, N. Rawlinson, J. Mori, N. R. Hanifa, S. Susilo, P. Supendi, H. A. Shiddiqi, A. D. Nugraha., & H. E. Putra. (2020). Implications for Megathrust Earthquakes and Tsunamis from Seismic Gaps South of Java Indonesia. Journal of Nature 10:15274.

Article Metrics

Abstract view(s): 271 time(s)
HTML: 66 time(s) PDF: 18 time(s)


  • There are currently no refbacks.