Identification of Andesite Resource Potential In Kalirejo Area, Kokap Sub-District, Kulon Progo Using Resistivity Method

Rizqi Prastowo(1*), Hurien Helmi(2), Obrin Trianda(3), Rofiqul Umam(4)

(1) Mining Engineering, Institut Teknologi Nasional Yogyakarta
(2) Geology Engineering, Institut Teknologi Nasional Yogyakarta
(3) Geology Engineering, Institut Teknologi Nasional Yogyakarta
(4) School of Science and Technology, Kwansei Gakuin University
(*) Corresponding Author

Abstract

In the last five years, the need for materials to build infrastructure in Kulon Progo Regency has increased with the construction of an international airport. In the construction process, strong earth or rock materials are needed to make buildings resistant to earthquakes, one of which is andesite rock. This study aims to determine andesite rocks' resources using a three-dimensional model based on the value of resistivity in Kalirejo district Kokap Kulon Progo. The research was conducted by geological and geophysical survey. Based on data on the distribution of rocks in the research area included in the intermediate igneous rocks, andesite. These rocks are intrusions that develop in research areas. Petrography analysis is used to determine the types of minerals in andesite rocks and determine which levels of rock changes have changed or not to affect the strength of rocks. These rocks are intrusions that develop in research areas. Geophysical survey is by resistivity method using configuration dipole-dipole with five lines, and each stretch is 200 m. Based on three-dimensional model resistivity, fresh andesite is at a depth of between 5-10 m. Value of andesite resistivity is more than 668 Ωm, while the value of weathered andesite resistivity ranges from 256-536 Ωm and andesite resources about 332,580 tons.

Keywords

Andesite, Geoelectric, Kalirejo, Resources

Full Text:

HTML PDF

References

Black, P. (2009) Andesites as resources for roading and concrete industries, North Island of New Zealand. Department of Geology. The University of Auckland. 328: 332.

Chalikakis, K., Plagnes, V., Guerin, R., Valois, R., & Bosch, F. P. (2011). Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeology Journal, 19(6), 1169-1180.

Dentith, M., and Mudge, S. T., (2014) Geophysics for the Mineral Exploration Geoscientist, Cambridge University Press: New York

Department of Transportation. (2015) Strategic Plan of the Director-General of Transportation Year 2015-2019. Jakarta.

Galletti, C. S., Ridder, E., Falconer, S. E., & Fall, P. L. (2013). Maxent modeling of ancient and modern agricultural terraces in the Troodos foothills, Cyprus. Applied Geography, 39, 46-56.

Giamboro WS and Hidayat W. (2016). 3D Modeling of Andesite Rock Resistivity sangon area, Kulonprogo Regency,DIY Province. JIK TekMin, 28(1) 20-26

Government of Kulon Progo Regency. (2007). Kulon Progo District Regulation Number: 16 Year 2007 concerning Long-Term Regional Development Plan Year 2005-2025, Kulon Progo

Guinea, A., Playà, E., Rivero, L., & Himi, M. (2010). Electrical resistivity tomography and induced polarization techniques applied to the identification of gypsum rocks. Near Surface Geophysics, 8(3), 249-257.

Harjanto, A. (2011). Vulkanostratigraphy In Kulon Jurnal Progo And Around the Region, Special Region of Yogyakarta. MTG ScientificJournal. 4 (8), pp. 1-18

Hersir, G. P., & Flóvenz, Ó. G. (2013). Resistivity surveying and electromagnetic methods. Global Environment.

Hu, Y., Burucs, Z., von Tucher, S., & Schmidhalter, U. (2007). Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environmental and Experimental Botany, 60(2), 268-275.

Hrenovic, J., Ivankovic, T., & Tibljas, D. (2009). The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. Journal of hazardous materials, 166(2-3), 1377-1382.

Irzon, R. (2018). Comagmatic Andesite and Dacite in Mount Ijo, Kulonprogo: A Geochemistry Perspective. Journal of Geology and mineral resources, 19(4), 221-231.

Jayadi, H., Meidji, I. U., & Tang, B. Y. (2020). Identifying Andesite Rocks Sources Using Geoelectrical Resistivity in Loli, Donggala Regency, Central Sulawesi. JPSE (Journal of Physical Science and Engineering), 4(2), 45-54.

Kearey, P., Brooks, M., Hill, I. (2002). An Introduction to Geophysical Exploration, Third Edition. USA. Iowa State University Press

Lugo, E., Playà, E., & Rivero, L. (2008). Aplicación de la tomografía eléctrica a la prospección de formaciones evaporíticas. Geogaceta, 44, 223-226.

Oh, T. M., Cho, G. C., & Lee, C. (2014). Effect of soil mineralogy and pore-water chemistry on the electrical resistivity of saturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 140(11), 06014012.

Octova, A., & Yulhendra, D. (2017). Iron ore deposits model using geoelectrical resistivity method with dipole-dipole array. In MATEC web of conferences, Vol. 101, p. 04017

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.

Purwasatriya, E. B. (2013). Studi Potensi Sumberdaya Andesit Menggunakan Metode Geolistrik Di Daerah Kokap, Kabupaten Kulonprogo, Daerah Istimewa Yogyakarta. Dinamika Rekayasa, 9(2), 55-61.

Prastowo, R. (2017) Pemodelan 2d Resistivitas Batuan Andesit Daerah Gunung Kukusan Kulon Progo. Kurvatek, 2(2), 87-93.

Prastowo, R., Huda, S., Umam, R., Jemsittiparsert, K., Prasetiyo, A E., Tortop, H S., and Syazali, M. (2019). The Effectiveness Of Environmental Geophysical Learning In Developing Academic Achievement And Conceptual Understanding Of Electrodynamics: Applications Geoelectric Using Cooperative Learning Model; JurnalIlmiahPendidikanFisika Al-BiRuNi, 08 (2)

Mackechnie, JR. (2004). Properties of New Zealand concrete aggregates. New Zealand cement and concrete association technical report 11. 57pp

Mostafaie, K., & Ramazi, H. (2015). Application of electrical resistivity method in sodium sulfate deposits exploration, case study: Garmab, Iran. Journal of Biodiversity and Environmental Sciences, 6(2), 2220-6663.

Rahardjo W., Sukandarrumidi dan Rosidi, H.M.D. (1995). Peta Geologi Lembar Yogyakarta, Jawa, Skala 1:100.000, Pusat Penelitian dan Pengembangan Geologi, Bandung

Sadjab, B A., Indrayana, I P T., Iwamony, S., Umam, R. (2020). Investigation of The Distribution and Fe Content of Iron Sand at Wari Ino Beach Tobelo Using Resistivity Method with Werner-Schlumberger Configuration. JurnalIlmiahPendidikanFisika Al-BiRuNi, 09 (1)

Sariisik, A., Sariisik, G., & Şentürk, A. (2011). Applications of glaze and decor on dimensioned andesites used in construction sector. Construction and Building Materials, 25(9), 3694-3702.

Telford W., L. Geldart, R. Sheriff dan D. Keys. (1976). Applied Geophysics, 1st Ed. Cambridge, London. New York. Melbourne: Cambridge University Press

Triani, T., Umam, R., Sismanto, S. (2021). 3D Modeling of Subsurface Lawanopo Fault In Southeast Sulawesi, Indonesia Using Grablox and its Consequence to Geohazard. Indonesian Journal of Geography, 53 (1)

Van Bemmelen, RW. (1949) Indonesian Geology Vol. IA, General Geology of Indonesia and Adjacent Islands. Government Printing Office. Hague. 598

Woodruff, L., Cannon, W. F., Smith, D. B., & Solano, F. (2015). The distribution of selected elements and minerals in soil of the conterminous United States. Journal of Geochemical Exploration, 154, 49-60.

Yan, J. Y., Meng, G. X., LV, Q. T., Zhang, K., & Chen, X. B. (2012). The progress and prospect of the electrical resistivity imaging survey. Geophysical and Geochemical Exploration, 4

Article Metrics

Abstract view(s): 491 time(s)
HTML: 281 time(s) PDF: 613 time(s)

Refbacks

  • There are currently no refbacks.