Spatial Analysis of Mangrove Distribution Using Landsat 8 Oli in Badung Regency and Denpasar City, Bali Province, Indonesia

Putu Perdana Kusuma Wiguna(1*), Ni Wayan Sri Sutari(2), Erik Febriarta(3), Afrinia Lisditya Permatasari(4), Ika Afianita Suherningtyas(5), Nur Ainun Harlin Jennie Pulungan(6), Tri Tanami Sukraini(7), Mutiara Gani(8)

(1) Udayana University, Bali, Indonesia
(2) Udayana University, Bali, Indonesia
(3) Master of Coastal and Watershed Management, Faculty of Geography, Universitas Gadjah Mada, Indonesia,
(4) Amikom University, Yogyakarta, Indonesia
(5) Amikom University, Yogyakarta, Indonesia
(6) Gadjah Mada University, Indonesia
(7) Politeknik Negeri Bali, Indonesia
(8) Master of Geological Engineering, Institut Teknologi Bandung, Jawa Barat, Indonesia
(*) Corresponding Author


Bali is an island situated among the Indonesian archipelago with huge potential to host mangrove forests. Using remote sensing technology advances, satellite images, such as Landsat images, might be employed to analyse mangrove forest distribution and density. This paper presents an analysis of mangrove distribution in Badung Regency and Denpasar City, Bali, as a basis for the management and conservation of mangrove ecosystems. This study used Landsat 8 OLI images and a vegetation index to analyse the mangrove forest distribution and density in this area. It started by identifying mangrove forests using the RGB 564 band and continued to distinguish between mangrove and non-mangrove objects using unsupervised classification, before analysing mangrove density using the NDVI formula. The results show that the mangrove forest area in 2020 was 1,269.20 ha, with an accuracy rate of 83%. Mangroves were found on the deepest or most curved coastline of the Benoa Bay area, on enclosed waters. This distribution follows the river network in the lower reach, which has thick deposits and is uninfluenced by large currents and waves. Based on the vegetation index analysis results, the mangrove forest area observed mainly had a moderate density, with a total area of 510.85 ha (40%), followed by high density (413.15 ha/ 33%) and low density (340.51 ha/ 27%).


density; Landsat 8; mangrove; NDVI.

Full Text:



Ahmad, A. & Quegan, S. (2013). Comparative Analysis of Supervised and Unsupervised Classification on Multispectral Data. Applied Mathematical Sciences, 7 (74), 3681 – 3694. doi:10.12988/ams.2013.34214.

Bunting P., Rosenqvist A., Lucas R., Rebelo L-M., Hilarides L., Thomas N., Hardy A., Itoh T., Shimada M. & Finlayson C.M. (2018). The Global Mangrove Watch – a New 2010 Global Baseline of Mangrove Extent. Remote Sensing, 10(10), 1669, 1-19. doi:10.3390/rs10101669.

Daza, D.A.V., Moreno, H.S., Port, L., Manzolli, R.P., Bolívar-Anillo, H.J. & Giorgio Anfuso, G. (2020). Mangrove Forests Evolution and Threats in the Caribbean Sea of Colombia. Water, 12(4), 1– 20. doi:10.3390/w12041113.

Duke, N.C., Kovacs, J.M., Griffiths, A.D., Preece, L., Hill, D.J.E., Oosterzee, P. van, Mackenzie, J., Morning, H.S. & Burrows, D. (2017). Large-scale dieback of Mangroves in Australia's Gulf of Carpentaria: A Severe Ecosystem Response, Coincidental with an Unusually Extreme Weather Event. Marine and Freshwater Research, 68(10), 1816–1829. doi:10.1071/MF16322 .

Duncan, C., Owen, H.F.J., Thompson, J.R., Koldewey, H.J., Primavera, J.H. & Pettorelli, N. (2018). Satellite Remote Sensing To Monitor Mangrove Forest Resilience and Resistance to Sea Level Rise. Methods in Ecology and Evolution, 9, 1837-1852. doi:10.1111/2041-210X.12923.

Dezhi, W., Id, B., Wan, Qiu, P., Su, Y., Guo, Q. & Wu, X. (2018). Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sensing, 10(2), 1 - 22. doi:10.3390/rs10020294.

Febriarta, E., Argadyanto, B.A., and Rosaji, F.S.C., (2018). Sumber Daya Air di Pulau Pelapis Kepuluan Karimata kabupaten Kayong Utara. Prosiding Seminar Nasional-4 Pengelolaan Pesisir dan Daerah Aliran Sungai, 181-186. doi:10.17605/

Febriarta, E., and Oktama, R. (2020). Pemetaan Daya Dukung Lingkungan Berbasis Jasa Ekosistem Penyedia Pangan dan Air Bersih di Kota Pekalongan. Jurnal Ilmu Lingkungan, 18(2), 283-289, doi:10.14710/jil.18.2.283-289.

Giesen, W., S. Wulffraat, M. Zieren, and L.Scholten. (2007). Mangrove Guidebook for Southeast Asia. Bangkok: FAO and Wetland Internasional.

Gupta, K., Mukhopadhayay, A., Giri, S., Chnada, A., Majumadar, S.D., Samanta, S., Mitra, D., Samai, R.N., Pattnaik, A.K., Hazra, S. (2018). An Index for discrimination of Mangrove from non-mangrove using LANSAD 8 OLI imagery. MethodsX, 5, 1129-1139. doi:10.1016/j.mex.2018.09.011.

Geurhaneu, N.Y & Kamiludin, U. (2013). Coastal Characteristics of Papela and Adjacent Area, Rote Island, East Nusa Tenggara. Bulletin of the Marine Geology, 28(1), 21–29. doi:10.32693/bomg.28.1.2013.52.

Hansun, S., Wiguna, P.P.K., Wicaksono, F., Rhea, M. & Hodge, G. (2019). Mapping the Spatial Accessibility of Riau’s Health Facilities using QGIS. International Journal of Engineering and Advanced Technology (IJEAT), 9(2), 2201 – 2204. doi:10.35940/ijeat.B3932.129219.

Hu, L., Xu, N., Liang, J., Li. Z., Chen, L. & Zhao, F. (2020). Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sensing, 12(19), 1 – 22. doi:10.3390/rs12193120.

He, Q., Siliman, B.R. (2019). Climate Change, Human Impacts and Coastal Ecosystems in the Anthropocene. Current Biology, 29(19), 1021-1035. doi:10.1016/j.cub.2019.08.042.

Heenkenda, M., & Joyce, K.E., Maier, S. & Bartolo, R. (2014). Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs. Remote Sensing, 6(7), 6064-6088. doi:10.3390/rs6076064.

Islam, M.M., Borgqvist, H. &Kumar, L. (2019). Monitoring Mangrove Forest Landcover Changes in the Coastline of Bangladesh from 1976 to 2015. Geocarto International, 34(13), 1458 – 1476. doi: 10.1080/10106049.2018.1489423.

Jia, M.,Wang, Z., & Li, L., Song, K., Ren, C., Liu, B. & Mao, D. (2014). Mapping China’s mangroves based on an object-oriented classification of Landsat imagery. Wetlands, 34(2), 1-7. doi:10.1007/s13157-013-0449-2.

Kandasamy, K. (2012). Importance of Mangrove Ecosystem. International Journal of Marine Science, 2 (10), 70 – 89. doi:10.5376/ijms.2012.02.0010.

Kantakumar, L.N & Neelamsetti, P. (2015). Multi-temporal land use classification using hybrid approach. The Egyptian Journal of Remote Sensing and Space Science, 18 (2), 289-295. doi:10.1016/j.ejrs.2015.09.003.

Lee, S.C., Hashim, R., Motamedi, S. & Ki-Il, S. (2014). Utilization of Geotextile Tube for Sandy and Muddy Coastal Management: A Review. The Scientific World Journal, 4 (6), 1–9. doi:10.1155/2014/494020.

Lee, J., Acharya, T. & Lee, D. (2018). Exploring Land Cover Classification Accuracy of Landsat 8 Image Using Spectral Index Layer Stacking in Hilly Region of South Korea. Sensors and Materials, 30 (12), 2927 - 2941. doi: 10.18494/SAM.2018.1934.

Maryantika, N & Lin, C. (2017). Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, East Java using multi-temporal Landsat images. Information Processing in Agriculture, 4 (4), 321 – 332. doi:10.1016/j.inpa.2017.06.003.

Mathieu, P-P & Aubrecht, C (ed). (2018). Earth Observation Open Science and Innovation. Switzerland: ISSI Scientific Report Series Volume 15. Springer International Publishing AG.

Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T. & Asano, T. (2006). Wave reduction in a Mangrove forest dominated by Sonneratia sp. Wetlands Ecology and Management Wetlands Ecology and Management, 14(4), 365-378. doi:10.1007/s11273-005-5388-0.

Ministry of Energy and Mineral Resources (KESDM). (2018). Gravity Core Laut. Ministry of Energy and Mineral Resources. Jakarta. (Accessed on November 10, 2020).

Misbari, S. & Hashim, M. (2016). Change Detection of Submerged Seagrass Biomass in Shallow Coastal Water. Remote Sensing, 8(3), 1 – 29, doi:10.3390/rs8030200.

Monsef, H.A.E. and S.E. Smith. (2017). A new approach for estimating mangrove canopy cover using Landsat 8 imagery. Computers and Electronics in Agriculture, 135, 183–194. doi:10.1016/j.compag.2017.02.007.

Naser M.A., Khosla, R., Longchamps, L. & Subash Dahal, S. (2020). Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions. Remote Sensing, 12(5), 1 – 27. doi:10.3390/rs12050824.

Noor, T., Batool, N., Mazhar, R. & Ilyas, N. (2015). Effects of Siltation, Temperature and Salinity on Mangrove Plants. European Academic Research, 2(11), 14172 - 14179.

Olsen, J.L., Ceccato, P., Proud, S.R., Fensholt, R., Grippa, M., Mougin, E., Ardö, J. & Inge Sandholt. (2013). Relation between Seasonally Detrended Shortwave Infrared Reflectance Data and Land Surface Moisture in Semi‑Arid Sahel, Remote Sensing. 5(6). 2898-2927. doi:10.3390/rs5062898.

Purnamasayangsukasih P.R., Norizah K. & Ismail Adnan A. & Shamsudin I. (2016). A Review of Uses Of Satellite Imagery in Monitoring Mangrove Forests. IOP Conf. Series: Earth and Environmental Science, 37, 1 – 15. doi:10.1088/1755-1315/37/1/012034.

Permatasari, A. L., Suherningtyas, I. A., & Wiguna, P. P. K. (2020). Analysis of Local Spatial Data Infrastructure to Support Volcanic Mudflow Mitigation along Putih River, Magelang Regency, Central Java Province, Indonesia. Forum Geografi, 34(1), 66–76. doi:10.23917/forgeo.v34i1.11169.

Pham, T.D., Yokoya, N., Bui, D.T., Yoshino, K. & Friess, D.A. (2019). Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing, 11 (3), 1–24. doi: 10.3390/rs11030230.

Pham, T.D., Xia, J., Thang, H., Tien B., D. & Le, Nga & Takeuchi, Wataru. (2019). A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrasses and Salt Marshes during 2010 - 2018. Sensors,19 (8), 1-37. doi: 10.3390/s19081933.

Roy, D., Kovalskyy, V. & Zhang, H., Vermote, E., Yan, L., Kumar, S. & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective Wavelength and Normalized Difference Vegetation Index Continuity. Remote Sensing of Environment, 185, 1- 14. doi:10.1016/j.rse.2015.12.024.

Stark, B., McGee, M., Chen, Y.Q. (2015). Short Wave Infrared (SWIR) Imaging Systems Using Small Unmanned Aerial Systems (sUAS). International Conference on Unmanned Aircraft Systems (ICUAS). Denver Marriott Tech Center Denver, Colorado, USA, June 9-12, 2015.

Sivakumar, M.V.K., Roy, P.S., Harmsen, K. & Saha, S.K

(ed). (2004). Satellite Remote Sensing and GIS Applications in Agricultural Meteorology. India: Proceedings of the Training Workshop 7-11 July, 2003.

Sowmya, D.R., Deepa, P. & Venugopal, K. (2017). Remote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey. International Journal of Computer Applications, 161(11), 24-37. doi: 10.5120/ijca2017913306.

Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J. & Duke, N. (2000). Global Mangrove Forests Distribution, v1. Available online: (accessed on November 10, 2020).

Sreeranga, S.,Takagi, H.& Shirai, R. (2021). Community-Based Portable Reefs to Promote Mangrove Vegetation Growth: Bridging between Ecological and Engineering Principles. International Journal of Environmental Research and Public Health, 2(18), 1-19. 590. doi:10.3390/ijerph18020590.

Taureau F., Robin M., Proisy C., Fromard F., Imbert D. & Debaine F. (2019). Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images. Remote Sensing, 11(3), 1-17. doi:10.3390/rs11030367.

Vannucci, M. (2004). Mangrove Management and Conservation: Present and Future. America: United Nations University Press America.

Warnasuriya, T. W. S., Kumara, M. P., Gunasekara, S. S., Gunaalan, K. & Jayathilaka R. M. R. M. (2020). An Improved Method to Detect Shoreline Changes in Small-Scale Beaches Using Google Earth Pro. Marine Geodesy, 43(6), 541-572. doi: 10.1080/01490419.2020.1822478.

Windusari, Y., Sarno, Saleh, E. & Hanum, L. (2014). Substrate Characteristics and Its Impact on Distribution of Mangrove Species: A Case Study in Sungai Barong Kecil in the Sembillang National Park At Banyuasin, South Sumatra. Journal of Biological Researches, 20(1), 82-86. Retrieved from

Xia, J., Yokoya, N. & Pham, D.T. (2020). Probabilistic Mangrove Species Mapping with Multiple-Source Remote-Sensing Datasets Using Label Distribution Learning in Xuan Thuy National Park, Vietnam. Remote Sensing, 12(22), 1–27. doi: 10.3390/rs12223834.

Article Metrics

Abstract view(s): 470 time(s)
PDF: 498 time(s)


  • There are currently no refbacks.