Forensic Profiling Analogue Approach for the Investigation of Natural Hazards – A Case Study from Onokoba Elementary School, Unzen Volcano, Japan

Balázs Bradák(1*), Christopher Gomez(2), Yoshinori Shinohara(3), Norifumi Hotta(4)

(1) Graduate School of Maritime Sciences, Kobe University
(2) Graduate School of Maritime Sciences, Kobe University; Faculty of Geography, Universitas Gadjah Mada
(3) Faculty of Agriculture, University of Miyazaki
(4) Graduate School of Agricultural and Life Sciences, The University of Tokyo
(*) Corresponding Author

Abstract

Internal temperature variations of pyroclastic flows and their deposits are arguably the most challenging data to acquire. As a preliminary study of the temperature variation inside pyroclastic flows, the remains of Onokoba Elementary School (Shimabara, Japan) were investigated. The elementary school is located in the close vicinity of Unzen volcano and was hit by one of the largest pyroclastic flows during the latest active period of the volcano on 15th of September 1991. This present preliminary study aims to determine the temperature exposure of various portion of the school building using field-forensic and urban geology. Natural hazard methods applied to the damaged materials exposed to high temperature have generated a temperature fingerprint the maximum temperature distribution. Charred wooden parts and plastic gutters installed on the schoolyard-side faced of the building turns out to be the most useful temperature indicators. The various deformation and alterations of the studied materials show significant differences in the temperature exposed to. Such differences on the second-floor section (between 75-110°C and 120-150°C) and on the first-floor section (above 435-557°C) of the building do not simply imply significant temperature heterogeneity in short distance (some ten to ≤100 m) inside the pyroclastic flow, but also points toward the possible effects of the building architecture on some key dynamic parameter of the pyroclastic flow. Such information may be important for planning future hazard mitigation actions.

Keywords

natural hazard; pyroclastic flow; emplacement temperature; field evidence; forensic geology

Full Text:

HTML PDF

References

Amante, C. Eakins, B.W. (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M. https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316

Babrauskas V. (2002) Ignition of Wood: A Review of the State of the Art. Journal of Fire Protection Engineering Vol. 12, No. 3, pp. 163-189. https://doi.org/10.1177/10423910260620482

Banks, N.G., Hoblitt, R.P. (1996) Direct temperature measurements of deposits, Mount St. Helens, Washington, 1980–1981. US Geol Surv Prof Pap Vol. 1387, pp. 1–76.

Bardot L., McClelland E. (2000) The reliability of emplacement temperature estimates using palaeomagnetic methods: a case study from Santorini, Greece. Geophysical Journal International Vol. 143, pp. 39–51. https://doi.org/10.1046/j.1365-246x.2000.00186.x

Baxter, P.J., Boyle, R., Cole, P., Neri, A., Spence, R., Zuccaro, G. (2005) The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat. Bull Volcanol Vol. 67, pp. 292–313. https://doi.org/10.1007/s00445-004-0365-7

Café, A.D. (2007) Physical Constants for Investigators, T.C. Forensic Web Page (Reproduced from "Firepoint" magazine - Journal of Australian Fire Investigators). Available at: https://www.tcforensic.com.au/docs/article10.html

Calder, E.S., Cole, P.D., Dade, W.B., Druitt, T.H., Hoblitt, R., Huppaert, H.E., Ritchie, L., Spark, R.S.J., Young, S.R., (1999) Mobility of pyroclastic flows and surges at the Soufriere Hills, Montserrat. Geophys. Res. Lett. Vol. 26, pp. 537-540. https://doi.org/10.1029/1999GL900051

Caricchi, C., Vona, A., Corrado, S., Giordano, G., Romano, C. (2014) 79 AD Vesuvius PDC deposits' temperatures inferred from optical analysis on woods charred in-situ in the Villa dei Papiri at Herculaneum (Italy). Journal of Volcanology and Geothermal Research Vol. 289, pp. 14-25. https://doi.org/10.1016/j.jvolgeores.2014.10.016

Cioni R., Gurioli L., Lanza R., Zanella E. (2004) Temperatures of the A.D. 79 pyroclastic density current deposits (Vesuvius, Italy). Journal of Geophysical Research 109:B02207. https://doi.org/10.1029/2002JB002251

Clement, B.M., Connor, C.B., Graper, G. (1993) Paleomagnetic estimate of the emplacement temperature of the long-runout Nevado de Colima volcanic debris avalanche deposit, Mexico. Earth Planet. Sci. Lett. Vol. 120, pp. 499-510.

Cole, P.D., Calder, E.S., Druitt, T.H., Hoblitt, R., Robertson, R., Spark, R.S.J., Young, S.R. (1998) Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat. Geophys. Res. Lett. Vol. 25, pp. 3425-3428. https://doi.org/10.1029/98GL01510

Coppola, D. P. (2011) `Hazards`. In: Introduction to International Disaster Management. Elsevier. pp. 37-137.

Denniss, A.M., Carlton, R.W.T., Harris, A.J.L., Rothery, D.A., Francis, P.W. (1998) Satellite observations of the April 1993 eruption of Láscar Volcano. Int. J. Remote Sens. Vol. 19, pp. 801-821. https://doi.org/10.1080/014311698215739

Fujii, T., Nakada, S. (1999) The 15-September 1991 pyroclastic flows at Unzen (Japan): a flow model for associated ash-cloud surges. J. Volcanol. Geotherm. Res. Vol. 89, pp. 159–172. https://doi.org/10.1016/S0377-0273(98)00130-9

Gaillard, J.C., Gomez, C. (2015) Post-disaster research: Is there gold worth the rush? Jamba – Journal of Disaster Risk Studies Vol. 7, No. 1, pp. 1-6, doi:10.4102/jamba.v7i1.120.

Geradts, Z., Sommer, P. (eds.) (2008). D6.7c: Forensic profiling. Future of Identity in the Information Society - FIDIS Deliverables, 6 (7c) Available at: http://www.fidis.net/resources/fidis-deliverables/forensic-implications/d67c-forensic-profiling/ Printable (.pdf): http://www.fidis.net/fileadmin/fidis/deliverables/fidis-wp6-del6.7c.Forensic_Profiling.pdf

Gomez, C., Hart, D.E. (2013). Disaster gold rushes, sophisms and academic neo-colonialism: comments on ‘Earthquake disasters and resilience in the global North. The Geographical Journal Vol. 179, pp. 272-277.

Hall, L. M., Steele, A. L., Mothes, P.A., Ruiz, M.C. (2013) Pyroclastic density currents (PDC) of the 16-17 august 2006 eruptions of Tungurahua volcano, Ecuador: geophysical registry and characteristics. Journal of Volcanology and Geothermal Research Vol. 265, pp. 78–93. https://doi.org/10.1016/j.jvolgeores.2013.08.011

Hoblitt, R.P., Kellogg, K.S. (1979) Emplacement temperatures of unsorted and unstratified deposits of volcanic rock debris as determined by paleomagnetic techniques. GSA Bulletin Vol. 90, No. 7, pp. 633–642. doi: https://doi.org/10.1130/0016-7606(1979)90<633:ETOUAU>2.0.CO;2

Inoue, K. (1999) Shimabara Shigatusaku earthquake and topographic changes by Shimabara Catastrophe in 1792. J. Japan Soc. Erosion Control Eng. Vol. 52, No. 4, pp. 45-54. https://doi.org/10.11475/sabo1973.52.4_45

Iurino, D.A., Bellucci, L., Schreve, D., Sardella, R. (2014) Exceptional soft tissue fossilization of a Pleistocene vulture (Gyps fulvus): new evidence for emplacement temperatures of pyroclastic flow deposits. Quaternary Science Reviews Vol. 96, pp. 180-187. https://doi.org/10.1016/j.quascirev.2014.04.024

JMA - Japan Meteorological Agency (2013) 85. Unzendake, Active volcanoes in Kyushu and Okinawa region, National catalogue of the active volcanoes in Japan, 4th edition. Japan Meteorological Agency and Volcanological Society Japan, 26 p. Available at: https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/volcanoes/085_unzendake.pdf

Kent, D.V., Ninkovich, D., Pescatore, T., Sparks, R.J. (1981) Palaeomagnetic determination of emplacement temperature of Vesuvius AD 79 pyroclastic deposits. Nature Vol. 290, pp. 393-396. https://doi.org/10.1038/290393a0

McClelland, E.A., Druitt, T.H. (1989) Palaeomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece. Bull. Volcanol. Vol. 51, pp. 16–27. https://doi.org/10.1007/BF01086758

Miyamoto, K. (2010). Numerical Simulation of Landslide Movement and Unzen-Mayuyama Disaster in 1792, Japan. Journal of Disaster Research Vol. 5, No. 3, pp. 280-287. https://doi.org/10.20965/jdr.2010.p0280

Nakada, S., Shimizu, H., Ohta, K. (1999) Overview of the 1990-1995 eruption at Unzen Volcano. Journal of Volcanology and Geothermal Research Vol. 89, pp. 1–22. https://doi.org/10.1016/S0377-0273(98)00118-8

Nakaoka R., Suzuki-Kamata K. (2014) Rock-magnetic evidence for the low-temperature emplacement of the Habushiura pyroclastic density current, Niijima Island, Japan. In: Ort M. H., Porreca M., Geissman J. W. (eds.), The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, Geological Society, London, Special Publications Vol. 396, pp. 51-66 http://dx.doi.org/10.1144/SP396.7

Ozeki, N., Okuno, M., Kobayashi, T. (2005). Growth history of Mayuyama, Unzen Volcano, Kyushu, Southwest Japan. Bulletin of the Volcanological Society of Japan Vol. 50, No. 6, pp. 441-454, https://doi.org/10.18940/kazan.50.6_441 (in Japanese with English abstract)

Paterson, G. A., Roberts, A. P. Niocaill, C.M., Muxworthy, A.R., Gurioli, L., Viramonté, J.G., Navarro, C., Weider, S. (2010) Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: an under-utilized tool. Bulletin of Volcanology Vol. 72, pp. 309–330. https://doi.org/10.1007/s00445-009-0324-4

Pensa, A., Capra, L., Giordano, G. (2019). Ash clouds temperature estimation. Implication on dilute and concentrated PDCs coupling and topography confinement. Sci Rep Vol. 9, pp. 5657. https://doi.org/10.1038/s41598-019-42035-x

Pollock, N., Harpp, K. S., Geist, D., Dufek, J., Mothes, P. A. (2010). Vegetation damage as a proxy for physical characteristics of PDCs. In: American Geophysical Union, Fall Meeting 2010, 13–17 December, San Francisco, California. American Geophysical Union (AGU), Washington, DC, abstract V13A-2337.

Porreca M., Mattei M., MacNiocaill C., Giordano G., McClelland E., Funiciello R. (2008) Paleomagnetic evidence for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani volcano, Central Italy). Bulletin of Volcanology Vol. 70, pp. 877–893, http://dx.doi.org/10.1007/s00445-007-0176-8

Pye, K., Croft, D.J., 2004. Forensic Geoscience: Principles, Techniques and Applications. Geological Society of London Special Publication, London Vol. 232, 318p.

Rader E., Geist D., Geissman J., Dufek J., Harpp K. (2015) Hot clasts and cold blasts: thermal heterogeneity in boiling-over pyroclastic density currents. In: Ort M. H.,

Porreca M., Geissman J. W. First (eds.), The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, Geological Society, London, Special Publications Vol. 396, pp. 67-86. http://dx.doi.org/10.1144/SP396.16

Ruggieri, N., Galassi, S., Tempesta, G. (2020) The effect of pyroclastic flows of the 79 AD eruption of Mount Vesuvius on the Pompeii’s city walls. The case study of the sector near the Tower XI. Journal of Cultural Heritage Vol. 43, pp. 235-241. https://doi.org/10.1016/j.culher.2019.10.008

Saito, T., Ishikawa, N., Kamata, H. (2003) Identification of magnetic minerals carrying NRM in pyroclastic-flow deposits. Journal of Volcanology and Geothermal Research Vol. 126, pp. 127–142. https://doi.org/10.1016/S0377-0273(03)00132-X

Sassa, K., Dang, K., Yanagisawa, H., He, B. (2016) A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster. Landslides Vol. 13, pp. 1405–1419, https://doi.org/10.1007/s10346-016-0691-9

Sawada, Y., Sampei, Y., Hyodo, M., Yagami, T., Fukue, M. (2000) Estimation of emplacement temperatures of pyroclastic flows using H/C ratios of carbonized wood. Journal of Volcanology and Geothermal Research Vol. 104, pp. 1-20. https://doi.org/10.1016/S0377-0273(00)00196-7

Scott, A. C., Glasspool, I. J. (2005) Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology Vol. 33, pp. 589–592. https://doi.org/10.1130/G21474.1

Spence, R.J.S., Zuccaro, G., Petrazzuoli, S., Baxter, P.J. (2004) Resistance of Buildings to Pyroclastic Flows: Analytical and Experimental Studies and Their Application to Vesuvius. Natural Hazards Review Vol. 5, No. 1, pp. 48-59. https://doi.org/10.1061/(ASCE)1527-6988(2004)5:1(48)

Spieler, O., Alidibirov, M., Dingwell, D.B. (2003) Grain-size characteristics of experimental pyroclasts of 1980 Mount St. Helens cryptodome dacite: effects of pressure drop and temperature. Bull. Volcanol. Vol. 65, pp. 90–104. https://doi.org/10.1007/s00445-002-0244-z

Sulpizio R., Zanella E., Maciás J. L., Saucedo R. (2014) Deposit temperature of pyroclastic density currents emplaced during the El Chichón 1982 and Colima 1913 eruptions. In: Ort M. H., Porreca M., Geissman J. W. (eds.), The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, Geological Society, London, Special Publications Vol. 396, pp. 35-49. https://doi.org/10.1144/SP396.5

Suzuki-Kamata, K., Sangen, K., Kamata, H., Taniguchi, H., Nakada, S. (1992) Installation of penetrator-type thermometers and blast-meters for detecting pyroclastic surges during eruptions of Unzen Volcano, Kyushu. Japan. J. Natural Disaster Sci. Vol. 14, pp. 1-8 (in Japanese with English abstract)

Tanaka, H., Hoshizumi, H., Iwasaki, Y., Shibuya, H. (2004) Applications of paleomagnetism in the volcanic field: A case study of the Unzen Volcano, Japan. Earth Planet Sp. Vol. 56, pp. 635–647. https://doi.org/10.1186/BF03352526

Ui, T., Matsuwo, N., Sumita, M., Fujinawa, A. (1999) Generation of block and ash flows during the 1990–1995 eruption of Unzen Volcano, Japan. Journal of Volcanology and Geothermal Research Vol. 89, pp. 123–137. https://doi.org/10.1016/S0377-0273(98)00128-0

Umakoshi, K., Shimizu, H., Matsuwo, N., Matsushima, T., Ohta, K., (1993) Seismic observation and infrared thermal surveys of the 1990-1993 eruption of Unzen Volcano. J. Natural Disaster Sci. Vol. 15, pp. 63-77.

Urrutia-Fucugauchi J. (1983) Palaeomagnetic estimation of emplacement temperature of pyroclastic deposits – preliminary study of Caldera de Los Humeros and Alchichica Crater. Geofisica Internationale Vol. 22, No. 3, pp. 277–292

Yamada, T. (2019) Characteristic of the pyroclastic surge occurred at Unzen Fugendake on September 15, 1991 around the OnoKoba elementary school. American Geophysical Union, Fall Meeting 2019, San Francisco, 9-13th December, 2019. abstract #NH21D-0998

Yamagata, T., Takashima, I., Watanabe, K., Izawa, E. (2004) Thermoluminescence dating of the latest lava domes at Unzen Volcano, NW Kyushu, Japan - Eruption history of the past 25,000 years after Myokendake Volcano. Bulletin of the Volcanological Society of Japan Vol. 49, No. 2, pp. 73-81. https://doi.org/10.18940/kazan.49.2_73 (in Japanese with English abstract)

Watanabe, K., Hoshizumi, H. (1995) Geological map of Unzen Volcano. Geological Survey of Japan, 1-8 (in Japanese with English abstract). Available at: https://gbank.gsj.jp/volcano/Act_Vol/unzen/index-e.html

Wright, J.V., 1978. Remanent magnetism of poorly sorted deposits from the Minoan eruption of Santorini. Bull. Volcanol. Vol. 41, No. 2, pp. 131-135. https://doi.org/10.1007/BF02597026

Zanella E., Sulpizio R., Gurioli L., Lanza R. (2014) Temperatures of the pyroclastic density currents deposits emplaced in the last 22 kyr at Somma–Vesuvius (Italy). In: Ort M. H., Porreca M., Geissman J. W. (eds) The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, Geological Society, London, Special Publications Vol. 396, pp. 13-33. https://doi.org/10.1144/SP396.4

Zanella E., Gurioli L., Pareschi M. T., Lanza R. (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. temperature of the deposits and hazard implications. Journal of Geophysical Research 112:B05214. https://doi.org/10.1029/2006JB004775

Zlotnicki, J., Pozzi, J.P., Boudon, G., Moreau, M.G. (1984) A new method for the determination of the setting temperature of pyroclastic deposits (example Guadeloupe: French West Indies). J. Volcanol. Geotherm. Res. Vol. 21, pp. 297-312. https://doi.org/10.1016/0377-0273(84)90027-1.

Article Metrics

Abstract view(s): 470 time(s)
HTML: 220 time(s) PDF: 143 time(s)

Refbacks

  • There are currently no refbacks.