Validating the GIS-based Flood Susceptibility Model Using Synthetic Aperture Radar (SAR) Data in Sengah Temila Watershed, Landak Regency, Indonesia

Ajun Purwanto(1*), Dony Andrasmoro(2), Eviliyanto Eviliyanto(3), Rustam Rustam(4), Mohd Hairy Ibrahim(5), Arif Rohman(6)

(1) IKIP PGRI Pontianak, Jl. Ampera No. 88, Kota Baru Pontianak, Kalimantan Barat 78116, Indonesia
(2) IKIP PGRI Pontianak, Jl. Ampera No. 88, Kota Baru Pontianak, Kalimantan Barat 78116, Indonesia
(3) IKIP PGRI Pontianak, Jl. Ampera No. 88, Kota Baru Pontianak, Kalimantan Barat 78116, Indonesia
(4) IKIP PGRI Pontianak, Jl. Ampera No. 88, Kota Baru Pontianak, Kalimantan Barat 78116, Indonesia
(5) Department Geography & Environment, Faculty Human Sciences Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
(6) School of Geography, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
(*) Corresponding Author

Abstract

In Indonesia, especially in regions where natural conditions and human activity coexist, flood disasters are a strong possibility. Flooding regularly has an impact on Sengah Temila, which is a component j/ of Indonesia's West Kalimantan Province. The issue in Sengah Temila is that there is little knowledge of the distribution of flood susceptibility in this region. The GIS-based flood susceptibility model has been widely used in Indonesia, but research dedicated to validating the model is limited. SAR-based analysis has been used for flood mapping in Indonesia, but its use for validating flood models has been limited.  The objective of this study is to identify the optimal weighting scenario for a GIS-based multi-criteria analysis flood model for use in the Sengah Temila Watershed. The GIS-based model is created by merging spatial parameters, including slope, elevation, flow accumulation, drainage density, land use and land cover (LULC), soil type, normalized difference vegetation index (NDVI), curvature, rainfall, distance to river, and topographic wetness index (TWI) with weighted multi-criteria analysis. In addition, Sentinel-1 GRD images from before and after the floods have been retrieved from Google Earth Engine using past floods of the watershed. In order to create a SAR-based flood model, the researchers then integrated and categorized the results. Eleven weighting scenarios were used to create eleven GIS-based flood models. To calculate the degree of spatial similarity, all of these models were contrasted with the SAR-based model using the Fuzzy Kappa approach. We found that in order to achieve ideal weighting, slope, topographic wetness index (TWI), rainfall, and flow accumulation should each be given a larger value.

Full Text:

PDF

References

Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool–a case of predicting potential zones of sus-tainable groundwater resources. Journal of Hydrology, 440, 75–89.

Alemayehu, Z. (2007). Modeling of Flood hazard management for forecasting and emergency response of ‘Koka’area within Awash River basin using remote sensing and GIS method. Addis Ababa University.

Allafta, H., & Opp, C. (2021). GIS-based multi-criteria analysis for flood prone areas mapping in the trans-boundary Shatt Al-Arab basin, Iraq-Iran. Geomatics, Natural Hazards and Risk, 12(1), 2087–2116.

Anusha, N., & Bharathi, B. (2020). Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 207–219.

Biswajeet, P., & Mardiana, S. (2009). Flood hazrad assessment for cloud prone rainy areas in a typical tropical environment. Disaster Advances, 2(2), 7–15.

Blistanova, M., Zeleňáková, M., Blistan, P., & Ferencz, V. (2016). Assessment of flood vulnerability in Bodva river basin, Slovakia. Acta Montanistica Slovaca, 21(1).

Bubeck, P., Botzen, W. J. W., & Aerts, J. C. J. H. (2012). A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Analysis: An International Journal, 32(9), 1481–1495.

Cai, S., Fan, J., & Yang, W. (2021). Flooding Risk Assessment and Analysis Based on GIS and the TFN-AHP Method: A Case Study of Chongqing, China. Atmosphere, 12(5), 623.

Chen, A. S., Evans, B., Djordjević, S., & Savić, D. A. (2012). Multi-layered coarse grid modelling in 2D urban flood simulations. Journal of Hydrology, 470, 1–11.

Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168.

Curebal, I., Efe, R., Ozdemir, H., Soykan, A., & Sönmez, S. (2016). GIS-based approach for flood analysis: Case study of Keçidere flash flood event (Turkey). Geocarto International, 31(4), 355–366.

Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1), e05865.

Elkhrachy, I. (2015). Flash flood hazard mapping using satellite images and GIS tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, 18(2), 261–278.

Falguni, M., & Singh, D. (2020). Detecting flood prone areas in Harris County: A GIS based analysis. Geo-Journal, 85(3), 647–663.

Gazi, M. Y., Islam, M. A., & Hossain, S. (2019). Flood-hazard mapping in a regional scale way forward to the future hazard atlas in Bangladesh. Malaysian J. Geosci, 3(1), 1–11.

Geographic, N. (2019). Floods. Available online:https://www.nationalgeographic.com/environment/ natural-disasters/floods/.

Ghimire, B., Chen, A. S., Guidolin, M., Keedwell, E. C., Djordjević, S., & Savić, D. A. (2013). Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Journal of Hydroinformatics, 15(3), 676–686.

Gigović, L., Pamučar, D., Bajić, Z., & Drobnjak, S. (2017). Application of GIS-interval rough AHP methodo-logy for flood hazard mapping in urban areas. Water, 9(6), 360.

Greene, R. G., & Cruise, J. F. (1995). Urban watershed modeling using geographic information system. Jour-nal of Water Resources Planning and Management, 121(4), 318–325.

Hagen-Zanker, A. (2006). Comparing continuous valued raster data: A cross disciplinary literature scan [Mo-nograph]. http://epubs.surrey.ac.uk/790371/

Hagos, Y. G., Andualem, T. G., Yibeltal, M., & Mengie, M. A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Ap-plied Water Science, 12(7), 1–18.

Haq, M., Akhtar, M., Muhammad, S., Paras, S., & Rahmatullah, J. (2012). Techniques of remote sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 135–141.

Islam, M. M., & Sado, K. (2000). Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS. Hydrological Sciences Journal, 45(3), 337–355.

Jamali, B., Löwe, R., Bach, P. M., Urich, C., Arnbjerg-Nielsen, K., & Deletic, A. (2018). A rapid urban flood inundation and damage assessment model. Journal of Hydrology, 564, 1085–1098.

Komolafe, A. A., Awe, B. S., Olorunfemi, I. E., & Oguntunde, P. G. (2020). Modelling flood-prone area and vulnerability using integration of multi-criteria analysis and HAND model in the Ogun River Basin, Ni-geria. Hydrological Sciences Journal, 65(10), 1766–1783.

Krzysztofowicz, R. (1993). A theory of flood warning systems. Water Resources Research, 29(12), 3981–3994. https://doi.org/10.1029/93WR00961

Li, Y., Martinis, S., Plank, S., & Ludwig, R. (2018). An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinforma-tion, 73, 123–135. https://doi.org/10.1016/j.jag.2018.05.023

Mandal, S. P., & Chakrabarty, A. (2016). Flash flood risk assessment for upper Teesta River basin: Using the hydrological modeling system (HEC-HMS) software. Modeling Earth Systems and Environment, 2(2), 59.

Mason, D. C., Giustarini, L., Garcia-Pintado, J., & Cloke, H. L. (2014). Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering. International Journal of Ap-plied Earth Observation and Geoinformation, 28, 150–159.

Negese, A., Worku, D., Shitaye, A., & Getnet, H. (2022). Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot dis-trict, northwestern Ethiopia. Applied Water Science, 12(12), 255. https://doi.org/10.1007/s13201-022-01772-7

Ozkan, S. P., & Tarhan, C. (2016). Detection of flood hazard in urban areas using GIS: Izmir case. Procedia Technology, 22, 373–381.

Paudyal, G. N. (1996). An integrated GIS-numerical modelling system for advanced flood management. Proceeding of the International Conference on Water Resources and Environment Research: Towards the 21st Century, Kyoto University, Japan, 555–562.

Petrucci, O. (2022). Factors leading to the occurrence of flood fatalities: a systematic review of research pa-pers published between 2010 and 2020. Natural hazards and earth system sciences, 22(1), 71-83.

Post, P. (2021). Https://pontianakpost.jawapos.com/pontianakpost/15/01/2021/banjir-terjang-landak-25-desa-terendam-ribuan-warga-masih-bertahan-di-rumah.

Pradhan, B., Shafiee, M., & Pirasteh, S. (2009). Maximum flood prone area mapping using RADARSAT images and GIS: Kelantan River basin. International Journal of Geoinformatics, 5(2).

Rimba, A. B., Setiawati, M. D., Sambah, A. B., & Miura, F. (2017). Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science, 1(1), 7.

Rincón, D., Khan, U. T., & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences, 8(8), 275.

Robinson, S. A., & Rai, V. (2015). Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach. Applied Energy, 151, 273–284. https://doi.org/10.1016/j.apenergy.2015.04.071

Rohman A., Comber A. and Mitchell G. 2019 Evaluation of Natural Flood Management using Curve Number in the Ciliwung Basin, West Java. AGILE 2018 2-5

Romanescu, G., Hapciuc, O. E., Minea, I., & Iosub, M. (2018). Flood vulnerability assessment in the moun-tain–plateau transition zone: A case study of Marginea village (Romania). Journal of Flood Risk Mana-gement, 11, S502–S513.

Rozalis, S., Morin, E., Yair, Y., & Price, C. (2010). Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of Hydrology, 394(1–2), 245–255.

Sarmah, T., Das, S., Narendr, A., & Aithal, B. H. (2020). Assessing human vulnerability to urban flood hazard using the analytic hierarchy process and geographic information system. International Journal of Di-saster Risk Reduction, 50, 101659.

Shafapour Tehrany, M., Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538–1561.

Singh, A. P., Arya, A. K., & Singh, D. Sen. (2020). Morphometric analysis of Ghaghara River Basin, India, using SRTM data and GIS. Journal of the Geological Society of India, 95(2), 169–178.

Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environmental Earth Sciences, 78(2), 47.

Tay, C. W., Yun, S.-H., Chin, S. T., Bhardwaj, A., Jung, J., & Hill, E. M. (2020). Rapid flood and damage mapping using synthetic aperture radar in response to Typhoon Hagibis, Japan. Scientific Data, 7(1), 100.

UN SPIDER. (2019). Step-by-Step: Recommended Practice: Flood Mapping and Damage Assessment Using Sentinel-1 SAR Data in Google Earth Engine | UN-SPIDER Knowledge Portal. https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step

Visser, H., & Nijs, T. (2006). The Map Comparison Kit. Environmental Modelling & Software, 346–358. https://doi.org/10.1016/j.envsoft.2004.11.013

Vojtek, M., & Vojteková, J. (2019). Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water, 11(2), 364.

Wondim, Y. K. (2016). Flood hazard and risk assessment using GIS and remote sensing in lower Awash sub-basin, Ethiopia. Journal of Environment and Earth Science, 6(9), 69–86.

Zhang, S., & Pan, B. (2014). An urban storm-inundation simulation method based on GIS. Journal of Hydro-logy, 517, 260–268.

Zhou, Q., Su, J., Arnbjerg-Nielsen, K., Ren, Y., Luo, J., Ye, Z., & Feng, J. (2021). A GIS-Based Hydrological Modeling Approach for Rapid Urban Flood Hazard Assessment. Water, 13(11), 1483.

Article Metrics

Abstract view(s): 521 time(s)
PDF: 452 time(s)

Refbacks

  • There are currently no refbacks.