Estimation of Sea Surface Salinity Concentration from Landsat 8 OLI Data in The Strait of Madura, Indonesia

Muhsi Muhsi(1*), Bangun Muljo Sukojo(2), Muhammad Taufik(3), Pujo Aji(4), Lalu Muhamad Jaelani(5)

(1) Universitas Islam Madura, JL. Pondok Peantren Miftahul Ulum Bettet, Pamekasan Madura, Gladak, Bettet, Kec. Pamekasan, Kabupaten Pamekasan, Jawa Timur 69317, Indonesia
(2) Institut Teknologi Sepuluh Nopember Surabaya, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60111
(3) Institut Teknologi Sepuluh Nopember Surabaya, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60111
(4) Institut Teknologi Sepuluh Nopember Surabaya, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60111
(5) Institut Teknologi Sepuluh Nopember Surabaya, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60111
(*) Corresponding Author

Abstract

Remote sensing technique to estimate the sea surface salinity has been widely implemented in the seas of various regions. The interface between them was developed using a regression equation like the algorithm in previous research. However, the use of this algorithm for waters in Indonesia, especially in Madura Strait, still requires some adjustment since it is related to the characteristics of different areas in which the algorithm was developed. The development of an applicable local algorithm was performed by finding the best coefficient value in estimating sea surface salinity by considering the value of its lowest NMAE (Normalized Mean Absolute Error). By using salinity and in-situ Rrs(l) (Reflectance of remote sensing) data, we found that the coefficient for the slope was -0.0092, and the intercept was 1.4903. The developed algorithm produces higher accuracy than the existing algorithm, with an NMAE of 0.51%. This NMAE value is smaller than previous research, so this new model can be used to estimate sea surface salinity, particularly in Indonesian sea waters.

Keywords

Estimation; Salinity; Landsat; Madura

Full Text:

PDF

References

Abe, H., Nomura, D., & Hirawake, T. (2021). Salinity regime of the northwestern Bering Sea shelf. Pro-gress in Oceanography, 198. https://doi.org/10.1016/j.pocean.2021.102675

Ahn., Y. H., Shanmugam, P., Moon, J. E., & Ryu, J. H. (2008). Satellite remote sensing of a low-salinity water plume in the East China Sea. Annales Geophysicae, 26(7), 2019–2035.

Akhter, S., Qiao, F., Wu, K., Yin, X., Chowdhury, K. M. A., & Chowdhury, N. U. M. K. (2021). Seasonal and long-term sea-level variations and their forcing factors in the northern Bay of Bengal: A sta-tistical analysis of temperature, salinity, wind stress curl, and regional climate index data. Dy-namics of Atmospheres and Oceans, 95. https://doi.org/10.1016/j.dynatmoce.2021.101239

Austin, R. W., & Petzold, T. J. (1981). The Determination of the Diffuse Attenuation Coefficient of Sea Water Using the Coastal Zone Color Scanner. Marine Science Springer, Boston, MA, 13, 239–256.

Austin, R. W., & Petzold, T. J. (1986). Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. Opt. Eng, 25, 473–479.

Bai, Y., Pan, D., Cai, W., He, X., Wang, D., & Tao, B. (2013). Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea. JOURNAL OF GEOPHYSI-CAL RESEARCH: OCEANS, 118, 227–243. https://doi.org/10.1029/2012JC008467

Binding, CE., & Bowers, DG. (2003). Measuring the salinity of the Clyde Sea from remotely sensed ocean color. Estuarine, Coastal and Shelf Science, 57, 605–611.

Budhiman, S. (2012). Perbandingan Karakteristik Spektral (Spectral Signature) Parameter Kualitas Perairan Pada Kanal Landsat ETM + dan Envisat Meris (Comparion of Water Constituents Spectral Signature on Landsat ETM+ and Envisat Meris Band. Jurnal Pengideraan Jauh, 9(2), 76–89.

Budhiman, S., Suhyb, M., Vekerdy, Z., & Verhoef, W. (2012). Deriving optical properties of Mahakam Delta coastal waters , Indonesia using in situ measurements and ocean color model inversion. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 157–169. https://doi.org/10.1016/j.isprsjprs.2012.01.008

Cuthbert, R. N., Sidow, A., Frost, K. F., Kotronaki, S. G., & Briski, E. (2021). Emergent effects of tem-perature and salinity on mortality of a key herbivore. Journal of Sea Research, 177. https://doi.org/10.1016/j.seares.2021.102126

Elkhrachy, I. (2021). Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photo-grammetry. Alexandria Engineering Journal, 60(6), 5579–5590. https://doi.org/10.1016/j.aej.2021.04.011

English, S. A., Wilkinson, C., & Baker, V. J. (1997). Survey Manual For Tropical Marine Resources (S. A. English, C. Wilkinson, & V. J. Baker, Eds.; second). Australian Institut of Marine Science.

George, J. (2005). Fundamentals of Remote Sensing (Second Edi). Universities Press (India).

Gordon, H., Brown, J. W., Evans, R. H., Smith, R. C., Gordon, R., Brown, O. B., Evans, H., Brown, W., & Baker, K. (1988). A semianalytic radiance model of ocean color. July 2014. https://doi.org/10.1029/JD093iD09p10909

Hair, J. F., W.C., B., B.J., B., R.E., A., & R.L., T. (2006). Multivariate Data Analysis (6th ed.).

Hecth, E., Coffey, M., & Dolan, P. (2002). OPTICS Fourth Edition (4th ed.). Addison Wesley.

Jaelani, L. M. L. M., Matsushita, B., Yang, W., & Fukushima, T. (2013). Evaluation of four MERIS at-mospheric correction algorithms in Lake Kasumigaura, Japan. International Journal of Remote Sens-ing, 34(24), 8967–8985. https://doi.org/10.1080/01431161.2013.860660

Jaelani, L. M., Limehuwey, R., Kurniadin, N., Pamungkas, A., Koenhardono, E. S., & Sulisetyono, A. (2016). Estimation of Total Suspended Sediment and Chlorophyll-A Concentration from Land-sat 8-Oli: The Effect of Atmospher and Retrieval Algorithm. IPTEK The Journal for Technology and Science, 27(1), 16–23. https://doi.org/10.12962/j20882033.v27i1.1217

Jaelani, L. M., Matsushita, B., Yang, W., & Fukushima, T. (2015). An improved atmospheric correction algorithm for applying MERIS data to very turbid inland waters. International Journal of Applied Earth Observation and Geoinformation, 39, 128–141. https://doi.org/10.1016/j.jag.2015.03.004

James W. Nybakken. (2001). Marine Biology : An Ecological Approach (5th ed.). Benjamin-Cummings Publishing Company.

Lee, Z., & Carder, K. L. (2005a). Diffuse Attenuation Coefficient of Downwelling Irradiance : An Eval-uation of Remote Sensing Methods. Journal of Geophysical Research, 110(10).

Lee, Z., & Carder, K. L. (2005b). Diffuse Attenuation Coefficient of Downwelling Irradiance : An Eval-uation of Remote Sensing Methods. Journal of Geophysical Research, 110(10).

Lee, Z., Carder, K. L., & Arnone, R. a. (2002). Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics, 41(27), 5755–5772.

Lee, Z., Du, K., & Arnone, R. (2005). A model for the diffuse attenuation coefficient of downwelling ir-radiance. Journal of Geophysical Research, 110(C2), 1–25. https://doi.org/10.1029/2004JC002275

Liemohn, M. W., Shane, A. D., Azari, A. R., Petersen, A. K., Swiger, B. M., & Mukhopadhyay, A. (2021). RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 218. https://doi.org/10.1016/j.jastp.2021.105624

Lillesand, T. M. K. M., Kiefer, R. W., & Chipman, J. (2004). Remote Sensing and Image Interpretation (5th ed.). John Wiley {&} Sons, Inc.

Liu, Y., Islam, M. A., & Gao, J. (2003). Quantification of shallow water quality parameters by means of remote sensing. Progress in Physical Geography, 27(1), 24–43. https://doi.org/10.1191/0309133303pp357ra

Lobban, C. S., & Harrison, P. J. (1997). Seaweed Ecology and Physiology. Cambridge University Press.

Mobley, C. D. (1999a). Estimation of Remote Sensing Reflectance from Above-Surface Measurements. Applied Optics, 38(36), 7442–7455.

Mobley, C. D. (1999b). Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36), 7442–7455.

Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters). J. Geophys. Res, 93, 10749– 10768.

Morel, A., & Maritorena, S. (2001). Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res, 106, 7163–7180.

Muhsi, M., Sukojo, B. M., Taufik, M., & Aji, P. (2017). Model Pendugaan Kandungan Sulfat di Air Laut Menggunakan Citra Satelit Landsat 8 OLI. Konferensi Nasional Teknik Sipil Dan Infrastruktur, 13–22.

Muhsi, M., Sukojo, B. M., Taufik, M., & Aji, P. (2018). Estimation Algorithm of Sulfate Concentration at The Sea Surface Based on Landsat 8 OLI Data. Journal of Theoretical and Applied Information Technology, 96(17), 5741–5753.

Muhsi, M., Sukojo, B. M., Taufik, M., & Aji, P. (2020). Mapping and Analysis A Distribution of Sulfate Concentration at The Sea Surface of Madura Strait Using Geographic Information System (GIS) Based on Landsat 8 OLI Data. IOP Conference Series: Earth and Environmental Science, 469(1), 12090. https://doi.org/10.1088/1755-1315/469/1/012090

Nababan, B., Wirapramana, A. A., & Arhatin, R. E. (2013). Spectral of Remote Sensing Reflectance of Surface Waters. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 5(1), 69–84.

Nafizah, Jaelani, L. M., & Winarso, G. (2016). Evaluasi Algoritma Wouthuyzen dan Son untuk Pendugaan Sea Surface Salinity (SSS) (Studi Kasus: Perairan Utara Pamekasan). JURNAL TEKNIK ITS, 5(September).

Salim, D., Yuliyanto, & Baharuddin. (2017). Karakteristik Parameter Oseanografi Fisika-Kimia Perairan Pulau Kerumputan Kabupaten Kotabaru Kalimantan Selatan. Enggano, 2(2), 218–228.

Sasaki, H., Siswanto, E., Nishiuchi, K., Tanaka, K., & Hasegawa, T. (2008). Mapping the low salinity Changjiang Diluted Water using satellite- retrieved colored dissolved organic matter ( CDOM ) in the East China Sea during high river flow season. GEOPHYSICAL RESEARCH LETTERS, 35, 1–6. https://doi.org/10.1029/2007GL032637

Scale, S. (2009). SATELLITE REMOTE SENSING : SALINITY MEASUREMENTS. 127–132.

Son, Y. B., Gardner, W. D., Richardson, M. J., Ishizaka, J., Ryu, J.-H., Kim, S.-H., & Lee, S. H. (2012). Tracing offshore low-salinity plumes in the Northeastern Gulf of Mexico during the summer sea-son by use of multispectral remote-sensing data. Journal of Oceanography, 68(5), 743–760. https://doi.org/10.1007/s10872-012-0131-y

Wang, F., & Xu, Y. J. (2008). Development and application of a remote sensing-based salinity prediction model for a large estuarine lake in the US Gulf of Mexico coast. 184–194. https://doi.org/10.1016/j.jhydrol.2008.07.036

Wei, J., & Lee, Z. (2013a). Model of the attenuation coefficient of daily photosynthetically available ra-diation in the upper ocean. Methods in Oceanography, 8, 56–74. https://doi.org/10.1016/j.mio.2013.12.001

Wei, J., & Lee, Z. (2013b). Model of the attenuation coefficient of daily photosynthetically available ra-diation in the upper ocean. Methods in Oceanography, 8, 56–74. https://doi.org/10.1016/j.mio.2013.12.001

Wouthuyzen, S., Tarigan, S., Indarto, H., Supriyadi, Sediadi, A., Sugarin, Siregar, V. P., & Ishizaka, J. (2008). Pengukuran Salinitas Permukaan Teluk JakartaMelalui Penginderaan Warna Laut MenggunakanData Multi-Temporal Citra Satelit Landsat-7 ETM+. PIT MAPIN XVII.

Article Metrics

Abstract view(s): 356 time(s)
PDF: 278 time(s)

Refbacks