Monitoring Biochemical Oxygen Demand (BOD) Changes During a Massive Fish Kill Using Multitemporal Landsat-8 Satellite Images in Maninjau Lake, Indonesia

Arif Rohman(1), Adam Irwansyah Fauzi(2*), Nesya Hafiza Ardani(3), Muhammad Ulin Nuha(4), Redho Surya Perdana(5), Rian Nurtyawan(6), Aynaz Lotfata(7)

(1) Department of Geomatics Engineering, Faculty of Regional and Infrastructure Technology, Institut Teknologi Sumatera
(2) Department of Geomatics Engineering, Faculty of Regional and Infrastructure Technology, Institut Teknologi Sumatera
(3) Department of Geomatics Engineering, Faculty of Regional and Infrastructure Technology, Institut Teknologi Sumatera
(4) Department of Geomatics Engineering, Faculty of Regional and Infrastructure Technology, Institut Teknologi Sumatera
(5) Department of Geomatics Engineering, Faculty of Regional and Infrastructure Technology, Institut Teknologi Sumatera
(6) Department of Geodesy Engineering, National Institute of Technology, 23 PH.H. Mustofa Street, 40124, Bandung, Indonesia
(7) School of Veterinary Medicine, Department of Veterinary Pathology, University of California, Davis, USA
(*) Corresponding Author

Abstract

Maninjau Lake is one of Indonesia's lakes for hydroelectric power plants, tourism, and fish farming activities. Some activities around the lake cause pollution, leading to massive fish kill. Therefore, it is necessary to monitor water quality regularly. One of the critical water quality parameters is biochemical oxygen demand (BOD). This study aimed to analyze BOD changes using a remote sensing approach during massive fish kills in Maninjau Lake, Indonesia. Multi-temporal Landsat-8 satellite images are processed to estimate the BOD level based on Wang Algorithm. After that, the estimated BOD value is validated using in situ data measurement. The results of the average BOD concentration that occurred in Lake Maninjau was 1.85 mg/L and showed that R2 was 0.8334, and the standard error was 0.076 between the estimated BOD and in situ data. Furthermore, the average concentration of BOD obtained on 23rd August 2017, 13th December 2017, 30th January 2018, 19th March 2018, and 7th July 2018 are 4.96 mg/L, 4.82 mg/L, 5.31 mg/L, 6.94 mg/L, and 6.60 mg/L, respectively. Increased BOD concentration in January 2018 indicates moderate pollution in the waters. BOD concentration increases after the massive fish kill due to the decaying fish across the lake.

Keywords

Freshwater Ecosystems; Water Quality; Remote Sensing; Satellite Images

Full Text:

PDF HTML

References

Abdelmalik, K. W. (2018). Role of statistical remote sensing for Inland water quality parameters pre-diction. Egyptian Journal of Remote Sensing and Space Science, 21(2), 193–200. doi: 10.1016/j.ejrs.2016.12.002

Abdullah, H. S., Mahdi, M. S., & Ibrahim, H. M. (2017a). Water Quality Assessment Models for Dokan Lake Using Landsat 8 OLI Satellite Images. In JZS. Retrieved from www.jzs.univsul.edu.iq

Aileen Tan, S. H., Sim, Y. K., Norlaila, M. Z., Nooraini, I., Masthurah, A., Nur Aqilah, M. D., Nithiyaa, N., & Noraisyah, A. B. (2021). Causes of fish kills in Penang, Malaysia, in year 2019, in conjunction to typhoon lekima. Journal of Survey in Fisheries Sciences, 7(2). doi: 10.18331/SFS2021.7.2.20

Apelabi, M. M., Rasman, R., & Rostina, R. (2021). Pengaruh Proses Biofilter Aerob Anaerob Terhadap Penurunan Kadar BOD Pada Limbah Cair Rumah Tangga (Studi Literatur). Sulolipu: Media Komu-nikasi Sivitas Akademika Dan Masyarakat, 21(1). doi: 10.32382/sulolipu.v21i1.2089

Banda, T. D., & Kumarasamy, M. V. (2020). Development of water quality indices (WQIs): A review. In Polish Journal of Environmental Studies (Vol. 29, Issue 3). doi: 10.15244/pjoes/110526

Bonansea, M., Mancini, M., Ledesma, M., Ferrero, S., Rodriguez, C., & Pinotti, L. (2019). Remote sensing application to estimate fish kills by Saprolegniasis in a reservoir. Science of The Total Environment, 669, 930–937. doi: https://doi.org/10.1016/j.scitotenv.2019.02.442

Bozorg-Haddad, O., Delpasand, M., & Loáiciga, H. A. (2021). Water quality, hygiene, and health. In Economical, Political, and Social Issues in Water Resources. doi: 10.1016/B978-0-323-90567-1.00008-5

Daroni, T. A., & Arisandi, A. (2020). Analisis BOD (Biological Oxygen Demand) di Perairan Desa Prancak Kecamatan Sepulu, Bangkalan. Journal Juvenil, 1(4), 558–566.

De Maisonneuve, C. B., Eisele, S., Forni, F., Hamdi, Park, E., Phua, M., & Putra, R. (2019). Bathymetric survey of Lakes Maninjau and Diatas (West Sumatra), and lake Kerinci (Jambi). Journal of Physics: Conference Series, 1185(1), 1–9. doi: 10.1088/1742-6596/1185/1/012001

Erfina, E. (2021). Biodiversitas Mangrove di Desa Terapung dan Totobo Sulawesi Tenggara. SAINTIFIK, 7(2). doi: 10.31605/saintifik.v7i2.333

Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016). A Comprehensive Review on Water Quality Parame-ters Estimation Using Remote Sensing Techniques. Sensors (Switzerland), 16(1298). doi: 10.3390/s16081298

Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., Tang, D., Lee, K. H., & Pun, L. (2019). Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sensing, 11(617). doi: 10.3390/rs11060617

Hajigholizadeh, M., Moncada, A., Kent, S., & Melesse, A. M. (2021). Land–Lake Linkage and Remote Sensing Application in Water Quality Monitoring in Lake Okeechobee, Florida, USA. Land, 10(147), 1–17. doi: 10.3390/land10020147

Henny, C., & Nomosatryo, S. (2016). Changes in water quality and trophic status associated with cage aqua-culture in Lake Maninjau, Indonesia. IOP Conference Series: Earth and Environmental Science, 31(1), 1–9. doi: 10.1088/1755-1315/31/1/012027

Ibrahim, A., Sudarso, J., Imroatushshoolikhah, I., Toruan, R. L., & Sari, L. (2021). Penggunaan Makrozoo-bentos dalam Penilaian Kualitas Perairan Sungai Inlet Danau Maninjau, Sumatera Barat. Jurnal Ilmu Lingkungan, 19(3). doi: 10.14710/jil.19.3.649-660

Kapalanga, T. S., Hoko, Z., Gumindoga, W., & Chikwiramakomo, L. (2021). Remote-sensing-based algorithms for water quality monitoring in Olushandja Dam, North-Central Namibia. Water Supply, 21(5), 1878–1894. doi: 10.2166/ws.2020.290

KLHK. (2011). Profil 15 Danau Prioritas Nasional. Kementerian Lingkungan Hidup Republik Indonesia Ja-karta, Indonesia.

Kragh, T., Martinsen, K. T., Kristensen, E., & Sand-Jensen, K. (2020). From drought to flood: Sudden carbon inflow causes whole-lake anoxia and massive fish kill in a large shallow lake. Science of the Total Environment, 739. doi: 10.1016/j.scitotenv.2020.140072

Laili, N., Arafah, F., Jaelani, L. M., Subehi, L., Pamungkas, A., Koenhardono, E. S., & Sulisetyono, A. (2015). Development of Water Quality Parameter Retrieval Algorithms for Estimating Total Suspended Solids and Chlorophyll-A Concentration Using Landsat-8 Imagery at Poteran Island Water. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II–2(W2), 55–62. doi: 10.5194/isprsannals-II-2-W2-55-2015

LIPI. (2020). Dilema Pengelolaan Danau Secara Multifungsi Perspektif Sosial dan Ekonomi (I. A. P. Putri & S. A. Dalimunthe, Eds.). Jakarta: LIPI Press.

Liputan6.com. (2018). 160 Ton Ikan di Danau Maninjau Pusing Lalu Mati. https://www.liputan6.com/regional/read/3268725/160-ton-ikan-di-danau-maninjau-pusing-lalu-mati,

Lukman, Sutrisno, & Hamdani, A. (2013). Pengamatan Pola Stratifikasi di Danau Maninjau Sebagai Potensi Tubo Belerang. Limnotek, 20(2), 129–140.

Makmur, M. (2010). Pengaruh Upwelling Terhadap Ledakan Alga (Blooming Algae) di Lingkungan Perairan Laut. Prosiding Seminar Nasional Teknologi Pengolahan Limbah VI.

Marti-Cardona, B., Steissberg, T. E., Schladow, S. G., & Hook, S. J. (2008). Relating fish kills to upwellings and wind patterns in the Salton Sea. Hydrobiologia, 604(1), 85–95. doi: 10.1007/s10750-008-9315-2

Mubarak, A. S., Satyari, D. A., & Kusdarwati, R. (2010). Korelasi antara Konsentrasi Oksigen Terlarut pada Kepadatan yang Berbeda dengan Skoring Warna Daphnia spp. Jurnal Ilmiah Perikanan Dan Kelautan, 2(1), 45–50.

Mushtaq, F., & Nee Lala, M. G. (2016). Remote estimation of water quality parameters of Himalayan lake (Kashmir) using Landsat 8 OLI imagery. Geocarto International. doi: 10.1080/10106049.2016.1140818

Nasution, Z., Sari, Y. D., & Huda, H. M. (2020). Perikanan Budidaya di Danau Maninjau: Antisipasi Ke-bijakan Penanganan Dampak Kematian Masal Ikan. Jurnal Kebijakan Sosial Ekonomi Kelautan Dan Perikanan, 1(1). doi: 10.15578/jksekp.v1i1.9252

Putri, I. A. P. (2017). Socio-economic Awareness on Protecting Lake Maninjau Using Willingness to Pay. Jurnal Sosial Ekonomi Pekerjaan Umum, 9(1).

Roslan, M., Yahya, M., Ahmad, Z., Hani, A., & Mokhtar, I. (2017). International Journal of Advanced and Applied Sciences. Order, 14(5), 18.

Soejarwo P, K. S. (2022). Pengelolaan Perikanan Budidaya Keramba Jaring Apung (KJA) dalam Upaya Penyelamatan Danau Maninjau. Jurnal Kebijakan Sosial Ekonomi Kelautan dan Perikanan, 12(1).

Subehi, L., Ridwansyah, I., & Fukushima, T. (2020). Dissolved Oxygen Profiles and Its Problems at Lake Maninjau, West Sumatra – Indonesia. Indonesian Journal of Limnology, 1(1), 7–11. doi: 10.51264/inajl.v1i1.3

Sukojo, B. M., & Sianipar, R. E. (2018). Spatial Analysis of Water Pollution using Multitemporal Satellite Imagery (Case Study: River Lamong Estuary, Surabaya). IOP Conference Series: Earth and Environmental Science, 165(1). doi: 10.1088/1755-1315/165/1/012015

Sulastri. (2006). Inland water resources and limnology in Indonesia. Tropics, 15(3), 285–295. doi: 10.3759/tropics.15.285

Syariz, M. A., Jaelani, L. M., Subehi, L., Pamungkas, A., Koenhardono, E. S., & Sulisetyono, A. (2015). Retrieval of sea surface temperature over Poteran Island water of Indonesia with Landsat 8 TIRS image: A preliminary algorithm. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, XL-2/W4, 87–90. doi: 10.5194/isprsarchives-XL-2-W4-87-2015

Tamyiz, M. (2015). Perbandingan Rasio BOD / COD Pada Area Tambak di Hulu dan Hilir Terhadap Biodegra-dabilitas Bahan Organik. Journal of Research and Technology, 1(1), 9–15.

USGS. (2019). Landsat 8 Data Users Handbook. In NASA (5th ed.).

Vigiak, O., Grizzetti, B., Udias-Moinelo, A., Zanni, M., Dorati, C., Bouraoui, F., & Pistocchi, A. (2019). Predicting biochemical oxygen demand in European freshwater bodies. Science of the Total Environment, 666. doi: 10.1016/j.scitotenv.2019.02.252

Wagle, N., Acharya, T. D., & Lee, D. H. (2019). Estimating Chlorophyll-a and Dissolved Oxygen Based on Landsat 8 Bands Using Support Vector Machine and Recursive Partitioning Tree Regressions. Proceedings, 42(1), 25. doi: 10.3390/ecsa-6-06573

Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzhen, China: Detection using LANDSAT/TM data. Science of the Total Environment, 328, 195–206. doi: 10.1016/j.scitotenv.2004.02.020

Article Metrics

Abstract view(s): 1098 time(s)
PDF: 462 time(s) HTML: 25 time(s)

Refbacks

  • There are currently no refbacks.