Specific Peak Discharge of Two Catchments Covered by Teak Forest with Different Area Percentages

Tyas Mutiara Basuki(1*), Rahardyan Nugroho Adi(2), Wahyu Wisnu Wijaya(3)

(1) Watershed Management Technology Center
(2) Watershed Management Technology Center
(3) Watershed Management Technology Center
(*) Corresponding Author

Abstract

In watershed area, forest has important roles in relation with peak discharge. This  research was conducted to study the impacts of teak forest on peak discharge. On-screen digitizing of IKONOS imagery was done to classify the land cover of the study area. Kejalen and Gagakan catchments covered by old teak forests by 74% and 53% respectively, were chosen as the study area. These catchments are located in Blora Regency. Automatic streamflow recorder was set at the outlet of each catchment and subsequently, peak discharges were examined from the recorded data. During the observation, there were 36 evidences of specific peak discharge. The results showed that a trend of lower peak discharges occurred in Kejalen catchment which has the higher percentage of teak forest area  in compared to Gagakan catchment with lower percentage of teak forest area, except when extreme rainfalls happened. At rainfall of 163 mm/day, specific peak discharge in Kejalen was higher than in Gagakan catchment. Although there is a relationship between specific peak discharge and the percentage of forest cover area, the increase of specific peak discharge is not only affected by forest cover, but also affected by daily rainfall, antecedent soil moisture, and rainfall intensity. Coefficients of determination between specific peak discharge and daily rainfall are 0.64 and 0.61 for Kejalen and Gagakan catchments, respectively.

Keywords

Peak discharge; catchment; teak forest

Full Text:

PDF HTML

References

Anna, A.N., Suharjo, dan Cholil, M. (2011) Analisis Fluktuasi Hujan dan Morfologi Sungai Terhadap Konsentrasi Banjir Daerah Surakarta. Forum Geografi, 25 (1): 41-52.

Asfaha, T.G., Frankal, A., Haile, M., Zenebe, A., and Nyssen, J. (2015) Determinants of Peak Discharge in Steep Mountain Catchments–Case of the Rift Valley Escarpment of Northern Ethiopia. Journal of Hydrology529 (3): 1725-1739.

Ayalew, T.B., Krajewski, W.F. & Mantilla, R. (2014) Connecting the Power-Law Scaling Structure of Peak-Discharges to Spatially Variable Rainfall and Catchment Physical Properties. Advances in Water Resources, 71: 32–43.

Bathurst, J.C., Iroumé, A., Cisneros, F., Fallas, J., Iturraspe, R., Novillo, M.G., Urciuolo, A., De Bièvre, B., Borges, V.G., Coello, C., others (2011) Forest impact on floods due to extreme rainfall and snowmelt in four Latin American environments 1: Field data analysis. Journal of Hydrology 400, 281–291.

Birkinshaw, S.J. Iroumé, A., and Palacios, E. (2011) The Effect of Forest Cover on Peak Flow and Sediment Discharge—An Integrated Field and Modelling Study in Central–Southern Chile, 25: 1284–1297.

Bosch, J.M. and Hewlett, J.D. (1982) A Review of Catchment Experiments to Determine the Effect of Vegetation Changes on Water Yield and Evapotranspiration. Journal of Hydrology, 55: 3-23.

Brown, S.C., Versace, V.L., Lesker, R.E., Walter, M.T. (2015) Assessing the Impact of Drought and Forestry on Streamflows in South-Eastern Australia Using a Physically Hydrological Model. Environmental Earth Sciences. DOI 10.1007/s12665-015-4628-8.

Bruijnzeel, L.A. (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture, ecosystems & environment 104, 185–228.

Du, E., Link, T.E., Wei, L., and Marshall, D. (2015) Evaluating Hydrologic Effects of Spatial and Temporal Patterns of Forest Canopy Change Using Numerical Modelling. Hydrological Processes. DOI: 10.1002/hyp.10591.

Dunne, T. and Leopold, L.B. (1978) Water in Environmental Planning. New York: W.H. Freeman and Company.

Genreyohannes, T., Frank, A., Haile, M., Abraham, A., Monsieurs, E., and Nyssen, J. (2015) Peak Discharge in Steep Mountain Catchments in Relation to Rainfall Variability, Vegetation Cover and Geomorphology of the Rift Valley Escarpment of Northern Ethiopia.Geophysical Research Abstract. Vol.17, EGU 2015-2947-1. EGU General Assembly 2015.

Geris, J., Tetzlaff, D., McDonnell, J., and Soulsby, C. (2014) The Relative Role of Soil Type and Tree Cover on Water Storage and Transmission in Northern Headwater Catchments. Hydrological Process. DOI: 10.1002/hyp.10289.

Hartini, S., Hadi, M.P., Sudibyakto, and Poniman, A. (2015) Application of Auto Vector Regression Model for Rainfall-River Discharge Analysis. Forum Geografi, Vol. 29 (1): 1-10.

Igarashi, Y., Kumagai, T., Yoshifuji, N., Sato, T., Tanaka, N., Tanaka, K., Suzuki, M., Tantasirin, C. (2015) Environmental control of canopy stomatal conductance in a tropical deciduous forest in northern Thailand. Agricultural and Forest Meteorology 202, 1–10.

Iroumé, A. and Palacios, H. (2013) Afforestation and Changes in Forest Composition Affect Runoff in Large River Basins with Pluvial Regime and Mediterranean Climate, Chile. Journal of Hydrology, 505: 113-125.

Isik, S., Kalin, L., Schoonover, J.E., Srivastava, P., and Lockaby, B.G. (2013) Modeling Effects of Changing Land Use/Cover on Daily Streamflow: An Artificial Neural Network and Curve Number Based Hybrid Approach. Journal of Hydrology, 485, 103–112.

Junaidi, E., Tarigan, S.D. (2011) Pengaruh hutan dalam pengaturan tata air dan proses sedimentasi Daerah Aliran Sungai (DAS): Studi Kasus di DAS Cisadane.

Lane, P.N., Mackay, S.M. (2001) Streamflow response of mixed-species eucalypt forests to patch cutting and thinning treatments. Forest Ecology and Management 143, 131–142.

Paschalis, A., Fatichi, S., Molnar, P., Rimkus, S., and Burlando, P.(2014) On the Effects of Small Scale Space-Time Vaiability of Rainfall on Basin Flood Response.Journal of Hydrology, 54: 313-327.

Pramono, I.B., Wahyuningrum, N., Wuryanta, A. (2016) Penerapan Metode Rational Untuk Estimasi Debit Puncak Pada Beberapa Luas Sub DAS. Jurnal Penelitian Hutan dan Konservasi Alam 7, 161–176.

Robinson, M., Cognard-Plancq, A.L., Consandey, C., David, J., Fűhrer, H.W., Hall, R., Hendriques, M.O., Marc, V., McCarthey, R., McDonnell, M., Martin, C., Nisbet, I., O'Dea, P., Rodgers, M., and Zollner, A. (2003) Studies of the Impact of Forests on Peak Flows and Baseflows: a European Perspective. Forest Ecology and Management, 186: 85-97.

Scott, D.F. and Lesch, W. (1997) Streamflow Responses to Afforestation with Eucalyptus grandis and Pinuspatula and to Felling in the Mokobulaan Experimental Catchments, South Africa. Journal of Hydrology, 199: 360–377.

Stoelzle, M., Stahl, K., Morhard, A., Weiler, M.(2014) Streamflow Sensitivity to Drought Scenarios in Catchments with Different Geology. Geophysical Research Letters, 41(17):6174–6183.

Vannier, O., Braud, I., and Anquetin, S. (2014) Regional Estimation of Catchment-Scale Soil Properties by Means of Streamflow Recession Analysis for Use in Distributed Hydrological Models. Hydrological Processes, 28(26), 6276–6291.

Zehe, E., Graeff, T., Morgner, M., Bauer, A., Bronstert, A. (2010) Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrology and Earth System Sciences 14, 873.

Article Metrics

Abstract view(s): 807 time(s)
PDF: 329 time(s) HTML: 446 time(s)

Refbacks

  • There are currently no refbacks.