Validation of Satellite Daily Rainfall Estimates Over Indonesia

Fatkhuroyan Fatkhuroyan(1*), Trinah Wati(2), Alfan Sukmana(3), Roni Kurniawan(4)

(1) Agency for Meteorology, Climatology and Geophysics of Indonesia, Jl. Angkasa 1 No. 2 Kemayoran, Jakarta 10720
(2) Agency for Meteorology, Climatology and Geophysics of Indonesia, Jl. Angkasa 1 No. 2 Kemayoran, Jakarta 10720
(3) Agency for Meteorology, Climatology and Geophysics of Indonesia, Jl. Angkasa 1 No. 2 Kemayoran, Jakarta 10720
(4) Agency for Meteorology, Climatology and Geophysics of Indonesia, Jl. Angkasa 1 No. 2 Kemayoran, Jakarta 10720
(*) Corresponding Author


Rainfall is the most important factor in the Earth’s water and energy cycles. The aim of this research is to evaluate the accuracy of Global Satellite Mapping of Rainfall (GSMaP) data by referencing daily rain-gauged rainfall measurements across the Indonesian Maritime Continent. We compare the daily rainfall data from GSMaP Moving Kalman Filter (MVK) to readings from 152 rain-gauge observation stations across Indonesia from March 2014 to December 2017. The results show that the correlation coefficient (CC) provides better validation in the rainy season while root mean square error (RMSE) is more accurate in the dry season. The highest proportion correct (PC) value is obtained for Bali-NTT, while the highest probability of detection (POD) and false alarm ratio (FAR) values are obtained for Kalimantan. GSMaP-MVK data is over-estimated compared to observations in Indonesia, with the mean accuracy for daily rainfall estimation being 85.47% in 2014, 85.74% in 2015, 82.73 in 2016, and 82.59% in 2017.


GSMaP; rainfall; rain-gauge

Full Text:



Gottschalck, J.; Meng, J.; Rodell, M.; Houser, P. (2005) Analysis of multiple rainfall products and

preliminary assessment of their impact on global land data assimilation system land surface states. Journal of Hydrometeorology 6(5): 573-598.

Kidd, C; Huffman, G. (2011) Global Precipitation measurement. Meteorol. Appl. 18 ; 334–353.

Vernimmen, R. R. E. ; Hooijer, A. ; Mamenun ; Aldrian, E. ; and van Dijk, A. I. J. M. (2012) Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia, Hydrol. Earth Syst. Sci., 16, 133-146,, 2012

Buarque, D.C.; De Paiva, R.C.D.; Clarke, R.T.; Mendes, C.A.B. (2011) A comparison of amazon rainfall characteristics derived from TRMM, CMORPH and the Brazilian national rain gauge network. J. Geophys. Res. Atmos. 2011, 116.

Chen, S.; Hong, Y.; Cao, Q.; Kirstetter, P.-E.; Gourley, J.J.; Qi, Y.; Zhang, J.; Howard, K.; Hu, J.; Wang, J. (2013) Performance evaluation of radar and satellite rainfalls for typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? J. Hydrol. 506, 4–13.

Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Gu, Guojun; Nelkin, Eric J.; Bowman, Kenneth P.; Hong, Yang; Stocker, Erich F.; Wolff, David B. (2007) The TRMM Multi-satellite Rainfall Analysis (TMPA): Quasi-global, multiyear, combined-sensor rainfall estimates at fine scales. Journal of Hydrometeorology, vol. 8, issue 1, p. 38–55.

K. Aonashi; J. Awaka; M. Hirose; T. Kozu; T. Kubota; G. Liu; S. Shige; S., Kida; S. Seto; N. Takahashi; and Y. N. Takayabu, (2009) GSMaP passive microwave rainfall retrieval algorithm: Algorithm description and validation. J. Meteor.Soc. Japan, 87A, 119–136.

C. Kidd; V. Levizzani; J. Turk; and R. Ferraro. (2009) Satellite precipitation measurements for water resource monitoring. Journal of the American Water Resources Association, vol. 45, no. 3, pp.567–579.

R. J. Joyce and P. Xie. (2011) Kalman filter-based CMORPH. Journal of Hydrometeorology, vol. 12, no. 6, pp. 1547–1563.

AghaKouchak, A; N. Nasrollahi; E. Habib.(2009) Accounting for Uncertainties of the TRMM Satellite Estimates. Remote Sens. 1, 606-619

T. Dinku; F. Ruiz ; S. J. Connor ; and P. Ceccato.(2010) Validation and intercomparison of satellite rainfall estimates over Colombia. Journal of Applied Meteorology and Climatology, vol. 49, no. 5, pp. 1004–1014.

M. R. P. Sapiano. (2010) An evaluation of high resolution precipitation products at low resolution. International Journal of Climatology, vol. 30, no. 9, pp. 1416–1422.

M. L. Scheel ; M. Rohrer ; C. Huggel ; D. S. Villar ; E. Silvestre ; and G. J. Huffman. (2011) Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrology and Earth System Sciences, vol. 15, no. 8, pp. 2649– 2663.

Setiawati, M.D. and Miura, F. (2016) Evaluation of GSMaP Daily Rainfall Satellite Data for Flood Monitoring: Case Study—Kyushu Japan. Journal of Geoscience and Environment Protection, 4, 101- 117.

Giarno ; Muhammad Pramono Hadi ; Slamet Suprayogi ; Sigit Heru Murti. (2018) Distribution of Accuracy of TRMM Daily Rainfall in Makassar Strait. Forum Geografi. Vol 32, No.1, pp 38-52

Ushio, T. ; Sasashige, K. ; Kubota, T. ; Shige, S. ; Okamoto, K ; and Aonashi, K. (2009) A Kalman

Filter Approach to the Global Satellite Mapping of Rainfall (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. Journal of Meteorological Society of Japan, 87A, 137-151.

T. Kubota ; S. Shige ; H. Hashizume et al. (2007) Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation. IEEE Transactionson Geoscience and Remote Sensing, vol. 45, no. 7, pp. 2259–2275,2007.

T.Kubota ;T.Ushio ; S. Shige ; S.Kida ; M.Kachi ; and K. Okamoto. (2009) Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. 2. Global Satellite Mapping of Precipitation (GSMaP) Project,” Journal of the Meteorological Society of Japan. Series II, vol. 87, pp. 203–222, 2009.

Promasakha, K; and Sakolnakhon (2013) Comparison the Estimate Rainfall from Global Satellite Mapping of Rainfall (GSMaP) to Ground-based Rainfall data over Thailand. 1st Joint Project Team Meeting for Sentinel Asia STEP3 (JPTM2013), 27-29 September 2013.

K.Okamoto ;T.Ushio ; T. Iguchi ; N.Takahashi ; and K. Iwanami. (2005) The global satellitemapping of precipitation (GSMaP) project. Proceedings of the IEEE International Geoscience and Remote

Sensing Symposium (IGARSS ’05), pp. 3414–3416.

E. Ebert. (2007) Methods for verifying satellite precipitation estimates. in Measuring Precipitation from Space,pp.345–356 :Springer, 2007.

Tan, M.L.; Tan, K.C.; Chua, V.P.; Chan, N.W. (2017) Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia. Water 2017, 9, 57.

Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou. (2017) A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain-gauge network. J. Geophys.Res. Atmos. 2017, 122, 910–924.

Aldrian, E ; and Susanto, R.D. (2003). Identification of three dominant rainfall regions within indonesia and their relationship to sea surface temperature. International Journal of Climatology. Vol 23. pp.1435-1452.

Fatkhuroyan, Trinah Wati, (2018) Accuracy Assessment of Global Satellite Mapping of Precipitation (GSMaP) Product Over Indonesian Maritime Continent. The 4th International Seminar on Sciences. IOP Conf. Ser.: Earth Environ. Sci. 187 012060. doi :10.1088/1755-1315/187/1/012060

Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. (2016) Evaluation of GPM day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167.

Kim, K.; Park, J.; Baik, J.; Choi, M. (2017) Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-east Asia. Atmos. Res. 2017, 187, 95–105.

Ma, Y. ; G. Tang ; D. Long ; B. Yong ; L. Zhong ; W. Wan, and Y. Hong. (2016) Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens., 8, 569, doi:

T. Dinku; S. Chidzambwa; P. Ceccato ; S. J. Connor ; and C. F. Ropelewski. (2008) Validation of high-resolution satellite rainfall products over complex terrain. International Journal of Remote Sensing Vol.29, no.14, pp.4097–4110.

A. AghaKouchak ; A. Behrangi ; S. Sorooshian ; K. Hsu ; and E. Amitai. (2011) Evaluation of satellite-retrieved extreme precipitation rates across the central United States. Journal of Geophysical

Research-Atmospheres, vol. 116, Article ID D02115.

Sorooshian, S.; AghaKouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.;

Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B. (2011) Advancing the remote sensing of

precipitation. Bull. Am. Meteorol. Soc. 2011, 92, 1271–1272.

Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.L.;

Turk, F.J.; Garcia, M.; Zeng, J. (2009) Component analysis of errors in satellite-based precipitation

estimates. J. Geophys. Res.: Atmos. 114, doi:10.1029/2009JD011949.

AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi. (2012) A. Systematic and random error components in satellite precipitation data sets. Geophys. Res. Lett. 2012, 39, doi:10.1029/2012GL051592.

Article Metrics

Abstract view(s): 1271 time(s)
PDF: 649 time(s) HTML: 656 time(s)


  • There are currently no refbacks.