Species Distribution of Styrax sumatrana in North Sumatra using Maxent Modelling Approach
Muhammad Hadi Saputra(1*), Saut Aritua Hasiholan Sagala(2), Han Soo Lee(3)(1) Balai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan Aek Nauli
(2) 
(3) Graduate School for International Development and Cooperation Hiroshima University 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Hiroshima, Japan, Japan TEL : (+81)82-424-4405 FAX : (+81)82-424-4405
(*) Corresponding Author
Abstract
Styrax sumatrana is the prestigious tree from North Sumatra. The resin which is a product from this tree has high demand and take a role as the primary income for farmer around the forest. However, the climate change along with the land conversion, threatens the species distribution . This paper aims to analyse the variable that contributes to Styrax sumatrana distribution and predict the potential distribution area of the species in North Sumatra Province . Several variables, such as elevation, slope, aspect, climate condition and land use land cover (LULC), were used to analyse the contribution for Styrax sumatrana distribution. The analysis uses the Maximum entropy model to examine the variable contribution for species distribution. The result shows that the mean temperature of the coldest quarter has a higher contribution for species distribution followed by elevation and LULC. The climate condition has a great impact by 28.5% than the other variable. The potential area that is suitable for Styrax sumatrana distribution was 8.91% or around 663,221.94 ha from a total of region.
References
Anas, A., & Kholibrina, C. R. (2017a). Estimation models for incense resin productivity (Styrax sumatrana J.J. SM) in North Sumatra. Jurnal Penelitian Kehutanan Sumatrana Jurnal, 1(1), 10–21.
Anas, A., & Kholibrina, C. R. (2017b). Faktor-faktor Fenotipe dan Lingkungan Penentu Produktivitas Resin Kemenyan Toba (Styrax sumatrana J. J. Sm). Jurnal Penelitian Kehutanan Sumatrana, 1(1), 1–9.
Anas, A., & Kholibrina, C. R. (2018). Growth and yield model for non-timber forest product of kemenyan ( Styrax sumatrana J . J . Sm ) in Tapanuli , North Sumatra Growth and yield model for non-timber forest product of kemenyan ( Styrax sumatrana J . J . Sm ) in Tapanuli , North Sumatra. In IOP Conference Series: Earth and Environmental Science 122 012036. IOP Publishing. https://doi.org/10.1088/1755-1315/122/1/012036
ASTER. (2012). ASTER Global Digital Elevation Map. Retrieved January 14, 2020, from https://asterweb.jpl.nasa.gov/gdem.asp
Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1–2), 1–19. https://doi.org/10.1016/j.ecolmodel.2006.07.005
Benítez-Badillo, G., Lascurain-Rangel, M., Álvarez-Palacios, J. L., Gómez-Díaz, J. A., Avendaño-Reyes, S., Dávalos-Sotelo, R., & López-Acosta, J. C. (2018). Influence of Land-Use Changes (1993 and 2013) in the Distribution of Wild Edible Fruits From Veracruz (Mexico). Tropical Conservation Science, 11, 1–11. https://doi.org/10.1177/1940082918758662
BMKG. (2015). www.dataonline.bmkg.go.id. Retrieved from http://dataonline.bmkg.go.id/data_iklim
Booth, T. H., Nix, H. A., Busby, J. R., & Hutchinson, M. F. (2014). Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions, 20(1), 1–9. https://doi.org/10.1111/ddi.12144
Byeon, D., Jung, S., & Lee, W.-H. (2018). Review of CLIMEX and MaxEnt for studying species distribution in South Korea. Journal of Asia-Pacific Biodiversity, 11(3), 325–333. https://doi.org/10.1016/J.JAPB.2018.06.002
Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2017). The impact of climate change on the distribution of two threatened Dipterocarp trees. Wiley Ecology and Evolution, 1–11.
Dermawan, B. A., Herdiyeni, Y., Prasetyo, L. B., & Siswoyo, A. (2018). Predicting the spread of acacia nilotica using Maximum Entropy modeling. Telkomnika (Telecommunication Computing Electronics and Control), 16(2). https://doi.org/10.12928/telkomnika.v15i4.6894
Dinas Perkebunan Sumatera Utara. (2018). Aplikasi Entry Data Statistik Perkebunan Sumatera Utara. Data Luas Areal, Produksi dan Produktivitas Perkebunan Rakyat Tahun 2017 Komoditi Kemenyan. Retrieved February 1, 2019, from http://disbun.sumutprov.go.id/statistik_2018
Gaol, E. D. L., & Simangunsong, B. C. H. (2012). Analisis Profitabilitas dan Tataniaga Kemenyan di Desa Sampean Kabupaten Humbang Hasundutan Sumatera Utara ( Profitability and Market Chain Analyses of Sumatera Benzoin at Sampean Village District of Humbang Hasundutan North Sumatera Province ). Journal Ilmu Dan Teknologi Kayu Tropis, 10(2), 130–138.
García-Fernández, C., Casado, M. A., & Ruiz Pérez, M. (2003). Benzoin gardens in North Sumatra, Indonesia: Effects of management on tree diversity. Conservation Biology, 17(3), 829–836. https://doi.org/10.1046/j.1523-1739.2003.01487.x
Gomes, V. H. F., Ijff, S. D., Raes, N., Amaral, I. L., Salomão, R. P., Coelho, L. D. S., … Ter Steege, H. (2018). Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-017-18927-1
Hartini, S., & Dwi Murti Puspitaningtyas. (2005). Flora Sumatera Utara Eksotik dan Berpotensi. Bogor: Pusat Konservasi Tumbuhan Kebun Raya Bogor, LIPI.
Herold, B. (2017). Facing an Uncertain Future. Education Week (Vol. 37). https://doi.org/10.17528/cifor/002600
Hijmans, R. J., & Elith, J. (2013). Species distribution modeling with R Introduction. October, 71. https://doi.org/10.1016/S0550-3213(02)00216-X
Hudjimartsu, S. A., Herdiyeni, Y., Prasetyo, L. B., & Siswoyo, A. (2017). Prediction of The Spread of Acacia nilotica Invasive Species Using Generalized Linear Models. Jurnal Manajemen Hutan Tropika, 23(December), 150–157. https://doi.org/10.7226/jtfm
Jayusman. (2014). Mengenal Pohon Kemenyan ( Styrax spp . ). (M. Na’iem, Mahfudz, & S. Prabawa, Eds.). Jakarta, Indonesia: IPB Press.
Kholibrina, C. R., Anas, A., & Susilowati, A. (2018). Flowering and fruiting phenology of Kemenyan toba ( Styrax sumatrana J . J . Sm .) in AekNauli. In IOP Conference Series: Earth and Environmental Science 122 (2018) 012061.
Loi, N. Van. (2008). Use of GIS Modelling in Assessment of Forestry Land’s Potential in Thua Thien Hue Province of Central Vietnam.
Meijaard, E., & Nijman, V. (2000). Distribution and conservation of the proboscis monkey (Nasalis larvatus) in Kalimantan, Indonesia. Biological Conservation 92, 92, 15–24.
Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490–509. https://doi.org/10.1111/j.1749-8198.2010.00351.x
Nimasow, G., Nimasow, O. D., Rawat, J. S., Tsering, G., & Litin, T. (2016). Remote sensing and GIS-based suitability modeling of medicinal plant (Taxus baccata Linn.) in Tawang district, Arunachal Pradesh, India. Current Science, 110(2), 219–227. https://doi.org/10.18520/cs/v110/i2/219-227
Nursamsi, I., Partasasmita, R., & Cundaningsih, N. (2018). Modeling the predicted suitable habitat distribution of Javan hawk- eagle Nisaetus bartelsi in the Java Island , Indonesia. Biodiversitas, 19(4), 1539–1551. https://doi.org/10.13057/biodiv/d190447
O’Donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. U.S Geological Survey Data Series 691, 10.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., & Dudík, M. (2008). Modeling of species distribution with Maxent: new extensions and a comprehensive evalutation. Ecograpy, 31(December 2007), 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x
Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. Twentyfirst International Conference on Machine Learning ICML 04, 69, 83. https://doi.org/10.1145/1015330.1015412
Prasad, A. M., Iverson, L. R., Matthews, S. N., & Peters, M. P. (2016). A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system. Landscape Ecology, 31(9), 2187–2204. https://doi.org/10.1007/s10980-016-0369-7
Rodrigues, P. M. S., Silva, J. O., Eisenlohr, P. V, & Schaefer, C. (2015). Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests. Brazilian Journal of Biology, 75(3), 679–684. https://doi.org/10.1590/1519-6984.20913
Silalahi, J., & Sunandar, A. D. (2017). Kemenyan ( Styrax spp .) Getah Berharga Tano Batak. Forestry Research of Aek Nauli. Retrieved from https://www.researchgate.net/publication/274702739_Kemenyan_Styrax_spp_Getah_Berharga_Tano_Batak?enrichId=rgreq-19023c3fce5c30c9a951bceeb8380a2c-XXX&enrichSource=Y292ZXJQYWdlOzI3NDcwMjczOTtBUzo0Njc3MzkwNDAwNjM0ODhAMTQ4ODUyOTA4NTY3MA%3D%3D&el=1_x_2&_esc=pu
Singh, M. (2013). Predictive modelling of the distribution of two critically endangered Dipterocarp trees: Implications for conservation of riparian forests in Borneo. Journal of Ecology and The Natural Environment, 5(9), 254–259. https://doi.org/10.5897/JENE2013.0383
Sohel, S. I., Akhter, S., Ullah, H., Haque, E., & Rana, P. (2017). Predicting impacts of climate change on forest tree species of Bangladesh: Evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). IForest, 10(1), 154–160. https://doi.org/10.3832/ifor1608-009
Sunandar, A. D. (2012). Peta Kesesuaian Jenis Kemenyan ( Styrax spp .) di Sumatera Utara ( Utilization of Geographic Information System to Develop Land Suitability Map for Styrax spp . in North Sumatera ). Jurnal Penelitian Hutan Tanaman, 9, 63–73.
Susilowati, A., Khoilibrina, C. R., Rachmat, H. R., & Munthe, M. A. (2018). Phylogeny of kemenyan ( Styrax sp .) from North Sumatra based on morphological characters Phylogeny of kemenyan ( Styrax sp .) from North Sumatra based on morphological characters. Environmental Science.
Thorn, J. S., Nijman, V., Smith, D., & Nekaris, K. A. I. (2009). Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions, 15(2), 289–298. https://doi.org/10.1111/j.1472-4642.2008.00535.x
Wright, S. J., Muller-Landau, H. C., & Schipper, J. (2009). The Future of Tropical Species on a Warmer Planet. Journal Compilation C, 23(6), 1418–1426. https://doi.org/10.1111/j.1523-1739.2009.01337.x
Article Metrics
Abstract view(s): 2562 time(s)HTML: 1334 time(s) PDF: 989 time(s)
Refbacks
- There are currently no refbacks.













