The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

Naufal Ishartono¹, Rafiza binti Abdul Razak², Siti Hajar binti Halili³, Yoga Dwi Windy Kusuma Ningtyas⁴, Wilda Syam Tonra⁵, Muhammad Noor Kholid⁶, Mohamad Waluyo⁷, Soraya Djamalah⁸

¹-²Faculty of Education, University of Malaya, Malaysia
¹,⁶Faculty of Teacher Training and Education, Universitas Muhammadiyah Surakarta, Indonesia
⁴Faculty of Teacher Training and Education, Universitas Muhammadiyah Jember, Indonesia
⁵Faculty of Teacher Training and Education, Universitas Khairun, Indonesia
⁷Faculty of Education, University of Szeged, Hungary
⁸Faculty of Teacher Training and Education, Universitas Muhammadiyah Banjarmasin, Indonesia

DOI: 10.23917/ijolae.v5i1.20377

Received: November 29th, 2022. Revised: December 5th, 2022. Accepted: December 9th, 2022
Available Online: December 13th, 2022. Published Regularly: January 1st, 2023

Abstract

Several previous researchers have tried to review the results of previous research related to the development of learning tools using a systematic literature review (SLR) model. However, SLR research efforts that examine the development of learning tools carried out by Indonesian in-service and pre-service mathematics teachers are still limited. Therefore, this study seeks to answer two questions, namely (1) what is the mathematics learning sets developed by the Indonesian ISTs and PSTs, and (2) What instructional design model is used by the Indonesian ISTs and PSTs in developing mathematics learning sets. As many as 55 articles were selected using the PRISMA protocol by retrieving articles from the ERIC and Dimensions databases. The findings of the two questions are that the ADDIE model is the most widely used model by Indonesian PSTs and ISTs in developing mathematics learning sets. In addition, mathematics learning media and mathematics student worksheets are the most developed tools by authors. This study also examines several instructional designs and types of mathematics learning sets developed by researchers, which can undoubtedly be a reference for subsequent researchers in developing mathematics learning sets.

Keywords: instructional design models, in-service mathematics teachers improvement, learning sets skills improvement, mathematics learning sets, pre-service mathematics teachers improvement, PRISMA

1. Introduction

Along with the rapid development of technology, the condition of the educational world is also required to be increasingly developed (Firdausy et al., 2019). The teacher's skills in delivering material must be implemented effectively and efficiently, but still do not leave the meaningfulness of the learning process. One of the efforts that can be made is to develop suitable mathematics learning sets that are valid and reliable (Agustina et al., 2021). Valid mathematics learning sets are right on target both from the
material aspect and the conformity aspect to the student. Next, the mathematics learning sets that are declared reliable remain valid even though they are used repeatedly (Ishartono, Nurcahyo, et al., 2022). With decent and up-to-date mathematics learning sets, the material delivery will be more readily accepted by students.

Apart from the aspect of the device, the development of mathematics learning sets must also look at the psychological development and character of students, who are increasingly different in each generation (Rejekiningsih, 2019). Some experts say that students who grew up and were born in the 2000s are called the technological native generation, where they are easier to adapt to the use of digital technology than in previous generations (Kai et al., 2021; Luik & Suviste, 2018; Saltan & Arslan, 2017; Wang et al., 2018). On the other hand, material aspects must also be considered in developing mathematics learning sets (E. Saputra & Fahrizal, 2019). The material aspect determines what kind of learning follows the character of the material being taught, for example, in geometry material in mathematics learning. GeoGebra, an integrated media based on mathematics learning sets, is better than MATLAB, which tends towards algebra and calculus.

In the development of mathematics learning sets, basic knowledge, as has been conveyed, must be possessed by a teacher in developing devices (Ishartono, Setyono, et al., 2022). At least four aspects must be considered in developing the mathematics learning sets: student aspects, curriculum aspects, media/device aspects, and aspects of learning approaches/models (Sun et al., 2018). Each of these aspects is interrelated, so failure to understand one aspect affects the other, significantly affecting the quality of the device that has been developed. The theories that cover these four aspects and the stages of developing mathematics learning sets are summarized in the concept of instructional design. This concept is considered essential to master by in-service teachers (ISTs) and pre-service teachers (PSTs).

a. Instructional Design and Indonesian ISTs and PSTs

One of the indicators of successful learning is an increased understanding of students on the material taught. Efforts to increase understanding of the material certainly cannot be separated from the meaningfulness of the learning process. Next, fluency is also influenced by models, approaches, media, and learning strategies represented in a mathematics learning set consisting of lesson plans, learning media and resources, and tests. Therefore, good mathematics learning sets must be based on good instructional design.

Instructional design is a set of systematic procedures for developing instructional materials (Merrill, 1994). Meanwhile, Chen (2016) argues that the discipline of designing educational experiences that make information and skill development more efficient, effective, and appealing. Several previous studies have actualized the definition into several instructional design models. The models are used by educational developers, practitioners, and researchers to support the creation of instructional design methods that elicit suitable cognitive processes (Khalil & Elkhider, 2016). Some of the instructional design models developed by previous researchers include ADDIE, ASSURE, Dick and Carey, 4D, SAM, and Merrill's Principles (see Table 1 for the details).
Table 1. Types of Instructional Design Models

<table>
<thead>
<tr>
<th>ID Model</th>
<th>Year*</th>
<th>Steps</th>
<th>MRDb</th>
<th>n¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDIE</td>
<td>1975</td>
<td>Analysis, Design, Development, Implementation, and Analysis</td>
<td>(Branch, 2009)</td>
<td>17,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyze Learner, State Standards and Objectives, Select Strategies, Utilize Technology, Require Learner Participation, and Evaluate</td>
<td>(Karakis et al., 2016)</td>
<td>2,610</td>
</tr>
<tr>
<td>ASSURE</td>
<td>1999</td>
<td>Instructional Goals, Instructional Analysis, Entry Behaviors, Performance Objectives, Criterion, Instructional Strategy, Instructional Materials, Formative Evaluation</td>
<td>(Dick, 1996)</td>
<td>2,000</td>
</tr>
<tr>
<td>Dick and Carey</td>
<td>1978</td>
<td>Define, Design, Development, and Disseminate</td>
<td>(Thiagarajan, 1974)</td>
<td>758</td>
</tr>
<tr>
<td>Four-D</td>
<td>1974</td>
<td>Define, Design, Development, and Disseminate</td>
<td>(Merrill, 2002)</td>
<td>44</td>
</tr>
<tr>
<td>Merrill’s Principles</td>
<td>2002</td>
<td>Activation, Demonstration, Application, and Integration</td>
<td>(Allen & Sites, 2012)</td>
<td>486</td>
</tr>
<tr>
<td>SAM</td>
<td>2012</td>
<td>Gather Materials, Meet with Team, Create a Prototype, Ask for Feedback, and Make Changes</td>
<td>(Allen & Sites, 2012)</td>
<td>486</td>
</tr>
</tbody>
</table>

*Year: the year when the models were invented

MRD: most referred document

n: number of the referred article based on the ERIC and Dimensions database during 2018-2022

Table 1 shows some instructional design models used by previous researchers. The table shows that the Four-D model by Thiagarajan (1974) was the first instructional design developed. This design consists of four stages: Define, Design, Development, and Disseminate. The Define stage determines the product's theme, needs, and philosophy—in this context, a mathematics learning set—to be developed. This model initially aims to develop instructional materials for training teachers of exceptional children (Thiagarajan, 1974). However, in its development, this model is used in the field of education but in a broader scope, such as in the development of mathematics learning sets.

On the other hand, SAM (Successive Approximation Model) is a newer instructional model developed in 2012 by Allen & Sites (2012). SAM is an ID that results from the ADDIE model's simplification (Jung et al., 2019). This model has five steps: Gather Materials, Meet with Team, Create a Prototype, Ask for Feedback, and Make Changes (Allen & Sites, 2012).

Next, Table 1 also shows that the ADDIE model is the most referenced model by researchers, with 17,000 articles and books referencing the model. Interestingly, despite having almost the same year the invention of the Four-D model developed by Thiagarajan, the difference in the number of articles referencing the Four-D model is far below ADDIE. Some researchers argue that the ADDIE model is the ID that has the most uncomplicated syntax (Cheung, 2016). At the same time, the least referenced model ID is Merrill's Principles, developed in 2002. In Table 1, there are only 44 references that refer to the model as an aspect of the discussion in the article. This could be because Merrill's Principles were initially developed for management training, as stated by Jghamou et al. (2019). Therefore, it is understood that there are not many educational studies that examine the model.

The interrelationship between instructional design and Indonesian researchers is quite strong in the Indonesian context. This can be seen from the Google Scholar database in Indonesian, where there are more
The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

than 6,200 research articles on the development of mathematics learning sets carried out by Indonesian researchers until 2021 using the keywords "Development" and "Learning".

b. Purpose and Significant of The Study

Some of the previous studies have systematically examined literature reviews related to instructional design, as done by Challco et al. (2016), which reviewed 18 research articles on computer-based systems for automating the instructional design of collaborative learning scenarios. Next, an SLR was conducted by Pástor et al. (2018), which examines the use of Semantic Web Technologies in the context of instructional design. In the SLR, they reviewed 21 articles and produced recommendations related to virtual learning settings, and the systems should include semantic web technology features. Lastly, Chan et al. (2021) conducted an SLR, which studies the implementation of instructional design pada virtual chemical laboratories. The SLR reviewed 76 research articles and concluded that virtual laboratories could be used as an effective complementary tool or tempered alternative to natural, hands-on laboratories; however, future research should focus on investigating skill-based learning outcomes using immersive VR and NUI technologies, as well as considering instructional design in virtual chemical laboratories. However, from some of these studies, SLR related to instructional design in the development of teacher skills in the Indonesian context is limited. This research is necessary because the rapid development of technology requires teachers to know

trends related to mathematics learning sets developed by ISTs and PSTs. Therefore, this study aims to describe the role of ID in assisting Indonesian PSTs and PSTs in developing mathematics learning sets. The research questions are as follows (a) what are the mathematics learning sets developed by the Indonesian ISTs and PSTs; and (b) what ID model is used by the Indonesian ISTs and PSTs in developing mathematics learning sets.

2. Method

This study is a systematic literature review (SLR) that employs the PRISMA protocol to select the qualified articles to be studied. Nightingale (2009) suggests that the first stage of conducting SLR is by developing a protocol that clearly defines: (1) the aims and objectives of the review, (2) the inclusion and exclusion criteria for studies, (3) how the study will be identified, and (4) the plan of analysis. Among those four definitions, the second is the most critical point determining whether the SLR is well conducted. Nightingale (2009) uses six inclusion criteria that are (1) type of study, (2) type of participants, (3) type of intervention, (4) comparison, (5) outcome measures, and (6) other aspect related to the characteristic of the study. To ensure that the protocol is well conducted, then Moher et al. (2009) suggest the concept of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyze), which consists of four stages of review, namely identification, screening, eligibility, and inclusion (see Figure 1 for the PRISMA steps in this study).
The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

Figure 1. PRISMA Steps

a. Search Identification

This stage is done by determining the keywords used to find relevant articles. In addition, this study also determined the range of research years, databases, languages, PICO principles, and article types. The articles searched for are those in Indonesian, so the database that covers the article is ERIC and Dimensions. Next, the range of years used is the last five years or from 2018-2022, and the type of article used is a research article. Examples of keywords used are "Instructional Design", "Development", and "Mathematics learning sets". Lastly, the PICO (Participant, Intervention, Comparison, and Outcome) principles are used to determine the keywords used in the article search process (Cooke et al., 2012). Examples of PICO-based keywords can be seen in Table 2. This stage resulted in as many as 521 articles that will proceed to the next stage.

Table 2. Keywords Base on PICO Principles

<table>
<thead>
<tr>
<th>PICO Aspects</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>“Pre-Service Teachers”, “Teachers”, and “In-Service Teachers”</td>
</tr>
<tr>
<td>Intervention</td>
<td>“Instructional Design” and “Instructional Design Model”</td>
</tr>
<tr>
<td>Comparison</td>
<td>“Development”</td>
</tr>
<tr>
<td>Outcomes</td>
<td>“Learning Media”</td>
</tr>
</tbody>
</table>

b. Article Screening

This stage involves issuing research articles, not the desired publication type. Therefore, some articles of the proceedings, review articles and book chapters are deleted from the list. Proceeding-type articles are excluded since this type has a relatively limited scientific impact, their relative im-
portance is shrinking, and they become obsolete faster than the scientific literature (Usée et al., 2008). Next, review articles are also excluded since these articles do not convey the results of research carried out empirically (Short, 2009). Besides the article type aspect, exclusion criteria are also based on the language used. At this stage, this research selects only articles written in English. The last criterion is duplicated articles. Because this study uses two international databases, there will likely be duplication of articles between the two databases. This stage issued 374 articles and left 147 articles to proceed to the next stage.

c. Article Eligibility and Inclusion

This stage is carried out by selecting eligibility articles from articles that pass the screening stage. Some of the articles excluded from the eligibility stage were because they were not well-structured, their methods were not robust, and they did not use any of the ID models, and a total of 92 articles were excluded from the list. Based on the results of the selection, there were as many as 55 articles that entered the inclusion stage for review. The data analysis process uses VoS Viewer and NVIVO 12.

3. Result and Discussion

This section will be described the results of the analysis of articles that have been selected. Next, the article was analyzed according to research questions, namely (1) Mathematics Learning Sets Developed by Indonesian PSTs and ISTs, and (2) ID Models Used by the Indonesian PSTs and ISTs to Develop the Mathematics Learning Sets. In general, the results of the analysis of the article can be seen in Figure 2.
The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

a. Mathematics Learning Sets Developed by Indonesian PSTs and ISTs

One aspect of a teacher’s success is how well the teacher develops the learning sets. Therefore, this section explains the learning sets developed in the 55 research articles (see Table 3 for details). Table 3 shows the types of developed mathematics learning sets Indonesian ISTs and PSTs have developed in the last five years. In general, student worksheets are the most developed type of learning set by Indonesian ISTs and PSTs, which can be seen for the circle size that is the biggest of the others. For instance, a study by Basuki & Wijaya (2018) developed ethnomathematics-based student worksheets. Following research results from Wijayanti & Abadi (2021), which also develops STEM and Problem-Based Learning (PBL)-based student worksheets, as well as many more previous studies that develop student worksheets by the Indonesian PSTs and ISTs (Bilad & Ekawati, 2022; Oktaviyanthi & Dahlan, 2018; Sagita et al., 2018; Sisi Pitriyana, 2019).

<table>
<thead>
<tr>
<th>Type of Learning Sets</th>
<th>n</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Worksheet</td>
<td>15</td>
<td>(Basuki & Wijaya, 2018; Bilad & Ekawati, 2022; Effendi et al., 2019; Lestari & Saragih, 2018; Muchsin et al., 2018; Murtiyasa et al., 2020; Naqiyah & Rosana, 2019; Oktaviyanthi & Dahlan, 2018; Purwitaningrum & Prammana, 2021; Rahmayani et al., 2018; Setiana et al., 2019; Sisi Pitriyana, 2019; Sunendar & Mahmudi, 2019; Ulandari et al., 2019; Wijayanti & Abadi, 2021)</td>
</tr>
<tr>
<td>Lesson Plan</td>
<td>6</td>
<td>(Muchsin et al., 2018; Naqiyah & Rosana, 2019; Setiana et al., 2019; Sunendar & Mahmudi, 2019; Ulandari et al., 2019; Wijayanti & Abadi, 2021)</td>
</tr>
<tr>
<td>Module</td>
<td>5</td>
<td>(Feriyanto & Putri, 2020; Hikayat et al., 2020; Patri & Heswari, 2021; Rahman, 2022; Setiana et al., 2019)</td>
</tr>
<tr>
<td>Book</td>
<td>8</td>
<td>(Alim et al., 2021; Feriyanto & Putri, 2020; Kusumadewi et al., 2021)</td>
</tr>
</tbody>
</table>
Table 3 shows the types of developed mathematics learning sets Indonesian ISTs and PSTs have developed in the last five years. In general, student worksheets are the most developed type of learning set by Indonesian ISTs and PSTs, which can be seen for the circle size that is the biggest of the others. For instance, a study by Basuki & Wijaya (2018) developed ethnomathematics-based student worksheets. Following research results from Wijayanti & Abadi (2021), which also develops STEM and Problem-Based Learning (PBL)-based student worksheets, as well as many more previous studies that develop student worksheets by the Indonesian PSTs and ISTs (Bilad & Ekawati, 2022; Oktaviyanthi & Dahlan, 2018; Sagita et al., 2018; Sisi Pitiyiana, 2019).

Next is learning media, defined as anything that may be utilized to channel signals from the sender to the recipient to stimulate learners' ideas, feelings, interests, and readiness to learn to attain the aim of learning effectively (Ediyani et al., 2020). From many selected articles, as many as 15 examine the development of learning media as carried out by Rachmadina & Pratiwi (2021), where they develop learning media in the form of videos integrated with the Powtoon application. In addition, some research results from Syarfina et al. (2022) examine the development of learning media suitable for teaching numbers in early childhood.

After the student worksheet and learning media were developed in 15 studies, there were learning materials developed in 8 studies. The use of learning materials provides good benefits in learning to help teachers explain concepts so that student's understanding of the concepts being taught becomes better (Hasibuan et al., 2019; Tuimur & Chemwei, 2015). Good learning materials must maximize learning potential by encouraging intellectual, aesthetic, and emotional involvement that stimulates right and left brain activity to maximize memory (Harsono, 2015). Learning materials can be loaded in books or digital media (Abadi et al., 2018).

Another learning set is a lesson plan, where several previous studies have developed lesson plans as part of the learning sets developed, such as those conducted by Setiana et al. (2019), who develop lesson sets where the lesson plan is part of the lesson.

<table>
<thead>
<tr>
<th>Type of Learning Sets</th>
<th>n</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>1</td>
<td>(Hidayah et al., 2020)</td>
</tr>
<tr>
<td>Learning Media</td>
<td>15</td>
<td>(Astuti et al., 2019; Az-Zahroh et al., 2019; Hanifah et al., 2019; Hidayati & Imrawati, 2019; H. Kurniawan & Susanti, 2020; Kusumadewi et al., 2021; Murtikusuma et al., 2019; Murtiyasa et al., 2020; Pardimin et al., 2019; Rachmadina & Pratiwi, 2021; W. B. Saputra et al., 2021; Setyaningrum & Waryanto, 2018; Suddin & Deda, 2020; Syarfina et al., 2022; Verawati et al., 2022)</td>
</tr>
<tr>
<td>Games</td>
<td>6</td>
<td>(Amir et al., 2019; Az-Zahroh et al., 2019; Setyaningrum & Waryanto, 2018; Suddin & Deda, 2020; Umbara et al., 2021; Yansen et al., 2019)</td>
</tr>
<tr>
<td>Android Apps</td>
<td>5</td>
<td>(Setyaningrum & Waryanto, 2018; Suddin & Deda, 2020; Verawati et al., 2022; Aritin et al., 2021; Kurniawan & Susanti, 2020)</td>
</tr>
<tr>
<td>Learning Materials</td>
<td>8</td>
<td>(Hanifah et al., 2019; Hikayat et al., 2020; Kusumadewi et al., 2021; Lestari & Saragih, 2018; Naqiyah & Rosana, 2019; Purwitaningrum & Prahma, 2021; Rusli et al., 2021; Ulandari et al., 2019)</td>
</tr>
</tbody>
</table>
The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

The research of Muchsin et al. (2018), the same as Setiana et al. (2019), where the development of lesson plans is part of the development of learning sets.

Next, many android applications are currently being developed for various purposes, including to support mathematics learning. The android application is an example of using technology in learning, where learning will be more varied and attract students' attention (Baihaki et al., 2022). Moreover, the use of android applications in learning mathematics can also help improve problem-solving abilities, such as those conducted by Arifin et al. (2021) and Verawati et al. (2022).

In addition to the three types of learning sets described, there are also other types, such as games, tests, books, android apps, and learning media. However, with so many researchers developing student worksheets, it shows that the learning set is the most needed by teachers. This is inseparable from the characteristics and benefits of student worksheets, which are effective for "guiding" students in learning activities and measuring student understanding (Bakri et al., 2020).

b. ID Models Used by the Indonesian PSTs and ISTs to Develop the Mathematics Learning Sets

In a Research and Development study, the ID models used are very decisive and related to the feasibility level of the product being developed. As for the literature study results from 90 articles analyzed, the results were obtained as stated in Table 4. Table 4 shows that the ADDIE model is the most referenced model by the Indonesian PSTs and ISTs (N = 15) as the basis for the theory of developing the learning sets, they developed. This is inseparable from the ADDIE character, which has a simple and easy-to-understand syntax compared to other models. This is in line with the opinion of Peterson (2003) and Ishartono et al. (2016), who argue that the ADDIE model is a practical, simple framework for instructional design.

<table>
<thead>
<tr>
<th>ID Models</th>
<th>n</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDIE model</td>
<td>14</td>
<td>(Astuti et al., 2019; Basuki & Wijaya, 2018; Bilad & Ekawati, 2022; Hanifah et al., 2019; Hikayat et al., 2020; Patri & Heswari, 2021; Rachmadina & Pratiwi, 2021; Rahman, 2022; Rahmayani et al., 2018; W. B. Saputra et al., 2021; Satiti et al., 2021; Setyaningrum & Waryanto, 2018; Suddin & Deda, 2020; Umbara et al., 2021)</td>
</tr>
<tr>
<td>Plomp model</td>
<td>5</td>
<td>(Alim et al., 2021; Amanda et al., 2022; Oktaviyanti & Dahlan, 2018; Setyaningsih et al., 2019; Wijayanti & Abadi, 2021)</td>
</tr>
<tr>
<td>Nieveen model</td>
<td>2</td>
<td>(Amanda et al., 2022; Amir et al., 2019)</td>
</tr>
<tr>
<td>Formative Research</td>
<td>1</td>
<td>(Angriani, 2018)</td>
</tr>
<tr>
<td>Agile</td>
<td>1</td>
<td>(Arifin et al., 2021)</td>
</tr>
<tr>
<td>Design Research</td>
<td>11</td>
<td>(Dasaprawira & Susanti, 2019; Effendi et al., 2019; Jannah et al., 2019; Nizar et al., 2018; Nusantara et al., 2020, 2021; Purwitaningrum & Pr Amanda, 2021; Patri & Zulkardi, 2020; Richardo & Martyanto, 2019; Sumandy, 2020; Yansen et al., 2019)</td>
</tr>
<tr>
<td>Lee Owen</td>
<td>1</td>
<td>(Az-Zahroh et al., 2019)</td>
</tr>
<tr>
<td>Tessmer Development</td>
<td>3</td>
<td>(Feriyanto & Putri, 2020; H. Kurniawan & Susanti, 2020; Nasution et al., 2019)</td>
</tr>
<tr>
<td>Watson-Glaser Critical Thinking Test</td>
<td>1</td>
<td>(Hidayah et al., 2020)</td>
</tr>
<tr>
<td>Four-D</td>
<td>13</td>
<td>(Hidayati & Irmawati, 2019; Khasanah & Astuti, 2018; Lestari & Saragih, 2018;</td>
</tr>
</tbody>
</table>
The next model was the Four-D developed by Thiagarajan (1974), which recorded 13 studies referencing this model. In addition to ADDIE being considered simple, some previous researchers have also argued that the Four-D model is also categorized as simple and easy to understand (Erawati et al., 2020; Kurniaman & Noviana, 2020). Of the many articles that use the ADDIE model, one study does not fully use ADDIE, namely the one conducted by Murtikusuma et al. (2019) where the syntax only stops at the development stage. According to him—who is a PSTs—this is due to limited research costs and time. The same is true in other Indonesian learning sets development studies—beyond the scope of the articles selected in this study—that use the Four-D model but only stop at the development stage for relatively the same reason (Palloan & Swandi, 2019).

The next model that becomes a priority is design research, where this model was developed by (Gravemeijer & Cobb, 1999). Design Research is designing systematic educational interventions consisting of design, development, and evaluation activities to improve the quality of educational activities or programs (Putrawangsa, 2018). Design Research has two objectives that are interrelated with one another, namely (1) developing educational interventions to solve learning problems and (2) formulating theoretical arguments that underlie the effectiveness of these interventions (intervention theory). Many mathematics education researchers often use this model to develop Local Instructional Trajectory (LIT), which is often combined with the Realistic Mathematics Education approach first developed by Freudenthal in 1997 (Heuvel-Panhuizen, 1993).

In addition to these three models, there are also many other models used by researchers from selected articles, such as Plomp Model, Nieveen Model, Formative Research Model, Agile Model, Lee Owen Model, Tessmer Development Model, Watson-Glaser Critical Thinking Test Model, Borg & Gall, Dick & Carey, Software Development Life Cycle (SDLC), dan DeVellis Model.

c. Significant and Limitations of The Study

The findings of this study were that in the first question, it was found that the most studied types of learning sets were mathematics student worksheets and mathematics learning media. While the least developed is the mathematical test. In the development of learning sets, tests cannot be separated from student worksheets and learning media (D. A. Kurniawan et al., 2022; Sulistianto et al., 2022). This is because the test measures how effective the two learning sets are in improv-
The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

4. Conclusion

This SLR research aims to answer two research questions, namely (1) mathematics learning sets developed by Indonesian PSTs and ISTs and (2) ID Models used by the Indonesian PSTs and ISTs to develop the mathematics learning sets. As for the first question, it was found that the development of student worksheets and learning media dominated the learning sets developed by the Indonesian PSTs and ISTs. Meanwhile, the second question found that the ADDIE caters model was the most significant proportion of the research numbers, followed by the Four-D model, which was not far from ADDIE. Subsequent research can be done by developing research questions related to research approaches and mathematical materials studied.

5. References

Introduction

Indonesia. *Elementary Education Online*, 18(3).

The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

material based on STEM education. *JPBI (Jurnal Pendidikan Biologi Indonesia)*, 5(3), 497–510.

Merrill, M. D. (1994). Designing and Instructional Design. In *Educational technology research and development (Issue 42)*. https://books.google.com/books?hl=en&lr=&id=kPB-L4JoOoC&oi=fnd&pg=PR7&dq=%22instructional+design+is%22&ots=kGVo5nWzVa&sig=CyxwSMpVBOsIFwckO5PmnoRIMZU

The Role of Instructional Design in Improving Pre-Service and In-Service Teacher's Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

https://doi.org/10.1016/j.mpsur.2009.07.005

The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

Usée, C., Larivièere, V., & Archambault, É. (2008). Conference proceedings as a source of scientific information: A
The Role of Instructional Design in Improving Pre-Service and In-Service Teacher’s Mathematics Learning Sets Skills: A Systematic Literature Review in Indonesian Context

