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Hybrid Henry Gas Solubility Optimization: An Effective 
Algorithm for Fuel Consumption Vehicle Routing Problem 

Dana Marsetiya Utama 1a, Baiq Nurul Izzah Farida1b, Ulfa Fitriani1c, M. Faisal Ibrahim2d, Dian Setiya 
Widodo3e  

Abstract.  The depletion of non-renewable fuel reserves is the biggest problem in the logistics sector. This problem 
encourages the transportation sector to increase fuel efficiency in distribution activities. The fuel optimization 
problem in distribution routing problems is called the Fuel Consumption Vehicle Routing Problem (FCVRP). This 
study proposes a novel Hybrid Henry Gas Solubility Optimization (HHGSO) to solve FCVRP problems. Experiments 
with several parameter variants were carried out to determine the performance of HHGSO in optimizing fuel 
consumption. Two data instances with 12 and 22 nodes were used to test the algorithm's effectiveness. In addition, 
the variation of population parameters, iterations HHGSO and the variable Kilometers per liter (KPL) are applied to 
optimize fuel consumption. The results show that the parameters of the HHGSO algorithm affect fuel consumption 
and computation time. In addition, the higher the KPL, the smaller the resulting fuel consumption. The proposed 
algorithm is also compared with several algorithms. The comparison results show that the proposed algorithm 
produces better computational time and fuel consumption than the Hybrid Particle Swarm Optimization, simulated 
annealing, and Tabu Search algorithms. 
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I. INTRODUCTION1 

Logistics is an essential element connecting 
companies to end customers (Garside et al., 
2016). The harmful effects of greenhouse gas 

(GHG) on human health and the environment 
have become a serious topic in recent years 
(Pasaoglu et al., 2012). One sector that triggers 
this problem is the logistics sector (Ibrahim et al., 
2020; Utama et al., 2021). Recently, researchers 
proposed green logistics to overcome this 
problem (Helo & Ala-Harja, 2018; Bi et al., 2020). 
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Green logistics is directly related to production 
and distribution globally by considering 
environmental factors (Sbihi & Eglese, 2007). The 
transportation sector in distribution activities is 
the most significant contributor to non-renewable 
fuel consumption (Özener & Özkan, 2020). Most 

of the modes of transportation are conventional 
vehicles with non-renewable fuel consumption. 
Therefore, the transportation sector makes it a 
significant contributor to GHG in the atmosphere 
(Salimifard et al., 2012). Therefore, distribution 
activities are required to implement effective 
policies to minimize fuel consumption (Utama et 

al., 2021) to reduce the harmful effects of GHG 
(Abdoli et al., 2017). Vehicle Routing Problem 
(VRP) is a combinatorial problem in solving 
optimization problems in distribution routing 
activities (Poonthalir & Nadarajan, 2018; Utama et 
al., 2020;  Ibrahim et al., 2021). Therefore, this 

problem is categorized as a combinatorial 
problem (Xiao & Konak, 2015; Ibrahim et al.,  
2021). The Green Vehicle Routing Problem (GVRP) 
recently introduced a new variant of VRP to help 
define routing policies at distribution centers. Lin 
et al. (2014) discussed the issue of GVRP, which 

focuses on optimizing fuel consumption. This 
study is commonly referred to as the fuel 
consumption vehicle routing problem (FCVRP) 
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(Moghdani et al., 2020; Psychas et al., 2014; Rao 
et al., 2016). 

Several studies to optimize fuel consumption 
have recently received more attention from 

researchers (Abdoli et al., 2017). The study 
focusing on FCVRP objectives was first 
investigated by Suzuki (2011). The proposed 
solution algorithm is the Tabu Search (TS) 
algorithm. Several other methods have also been 
proposed to minimize fuel consumption, 

including novel hybrid tabu search (Niu et al., 
2018), intelligence heuristic partitioning (Gaur et 
al., 2013), and firefly algorithm (Zhang et al., 
2015). Zhang et al. (2015) proposed a tabu search 
(TS) to solve the FCVRP problem. The Simulated 
annealing (SA) algorithm offered by Kuo (2010), 
which is also used by Normasari et al., (2019), 

Wang et al., (2019), and  Xiao et al., (2012). Other 
popular algorithms that have been proposed for 
FCVRP problems include the ant colony 
optimization (ACO) algorithm, genetic algorithm 
(GA) , and particle swarm optimization (PSO) 
(Ramadhani & Garside, 2021). Ali and Farida 

(2021) recently proposed a Hybrid PSO (HPSO) 
procedure to solve the FCVRP problem. 
Unfortunately, their research does not consider 
computational time as a performance factor in 
solving FCVRP problems. In the decision-making, 
decision-makers are also considering procedures 

capable of completing fast FCVRP times with 
minimal energy consumption. However, previous 
studies did not analyze the computational time of 
FCVRP completion as one of the algorithm's 
performances. 

One of the interesting new algorithms to be 
developed is the Henry Gas Solubility 

Optimization (HGSO) algorithm. This algorithm 
was proposed by Hashim et al. (2019), which was 
inspired by Henry law's physics principles. HGSO 
is proven can to solve optimization problems 
such as predicting tensile strength (Shehabeldeen 
et al., 2020), design optimization (Yıldız et al., 

2020), feature selection (Neggaz et al., 2020), 
scheduling (Abd Elaziz & Attiya, 2021), controller 
design (Ekinci et al., 2020), prediction (Ding et al., 
2021), and control optimization (Ekinci, et al., 
2021). Although interest in FCVRP issues is 
increasing, studies related to FCVRP are still 

lacking. In addition, based on previous research, 
the HGSO Algorithm has never been applied to 
solving FCVRP. Nevertheless, it is what motivates 
researchers to use HGSO to complete FCVRP. This 

study tries to develop the HGSO procedure by 
combining neighborhood procedures such as flip, 
swap, and slide. Therefore, this study proposes a 
novel hybrid HGSO (HHGSO) procedure for 
optimizing the FCVRP problem. This study 
experimented with several parameters of the 

HHGSO algorithm to determine the performance 
of fuel consumption and computation time of 
completion. The proposed algorithm is also 
compared with several other algorithms to 
measure FCVRP performance and computation 
time. The contribution of this research is to enrich 
the procedure in the completion of FCVRP by 

proposing a novel procedure for HHGSO. 

II. RESEARCH METHOD 

Assumptions, Notations, and Mathematical 

Models 

In this section, this article describes the 
assumptions, notations, and mathematical models 
of FCVRP problems. The assumptions used are as 
follows; (1) Each vehicle departs and returns to 

the depot; (2) Each customer is visited by one 
vehicle; (3) Vehicles for logistics activities are 
homogeneous; (4) Fuel consumption is affected 
by distance, and weight of the load; and (5) The 
demand for each customer is constant. 

The notation used in the FCVRP problem is 

as follows: P : the fuel increase % when 
increased vehicle load weight M N� : Routes/vehicle number  J��  : the i-th node's on the r-th route 
(for example J1

2= 1, the 2 path is 

0-3-1-7-0, a node in the 2 is 3) Q : vehicle capacity FC(
�� )(
����) : fuel consumption from node i to 
i+1 on r-th route. L(
�� )(
����) : vehicle load between node  I to 
I+1 along the r-th route d(
�� )(
����) : The distance in r-ths between 
nodes i-th and i+1 KPL(
�� )(
����) : The distance traveled per liter fuel 
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from i-th to i+1 node on the r th 
route v(
�� )(
����) : the average speed of unloaded 
vehicles M : When extra load weight M, the 
vehicle increases the fuel 
consumption V� : Number of route nodes r, r = 1,2, ⋯, N q
��  : Demand on the r-th route of the 

i-th node 
The mathematical formulation of this study 

was developed from the FCVRP model proposed 
by Kuo (2010). The FCVRP mathematical formula 
for this problem is presented as follows: 

Min ∑ ∑ �(��� )(�����)���(��� )(�����)
× (1 + p × �(��� )(�����)" ))#�$%&'%(��'%  (1) 

 
subject to ∑ )*+,

-+$%.'/ ≤ 1,     ∀4 = 1, 2, ⋯ , N�   (2) 

 78*+, 98*+,��9 = ∑ )*+,,-+$%.,'.:% ,   ∀4 = 1, 2, ⋯ , N� (3) 

 ;<% = ;<-+ = 0,     ∀4 = 1, 2, ⋯ , N�       (4) 

 N� ≥ 0, ?< ≥ 0, ;<. ⊂ ?, ∀ 4 = 1, 2, ⋯ , N�, ∀B =1, 2, ⋯ , ?<                   (5) 
 

The objective function of this problem is to 
minimize the cost of fuel consumption (Eq. (1)). 
The constraints of the FCVRP problem are 
modeled in 4 constraint equations. First, 
constraint to center as each vehicle route's 
starting and ensure that the load does not exceed 

the vehicle's capacity is formulated in Equations 
(2) and (3). Next, constraints that model the 
distribution ending nodes are formulated in 
Equation (4). The final constraint is to ensure that 
the number of vehicles and routes is > 0. 

 
Proposed Algorithm 

This study proposes the HHGSO algorithm 
inspired by the HGSO algorithm combined with 
the neighborhood procedure. HGSO is an 
algorithm initiated by Hashim et al. (2019) based 
on Henry law's physics principles. William Henry 

formulated Henry's law in 1803. Henry's law says 

that the solubility of a gas (CD) is proportional to 

the partial pressure of the gas (ED). It is 

formulated in equation (6), where H is the value 
of Henry's constant. CD = F × ED          (6) 

 

HGSO has two main stages (Hashim et al., 
2019) , such as (1) Initialization process and 
Clustering, and (2) update position including, 
Update Henry's Coefficient, Update Solubility, 
Escape from local optimum, and Update position 
of the worst agents. Furthermore, the HGSO 
algorithm is combined with the neighboring 

procedure in the proposed algorithm. Thus, the 
three main stages of the HHGSO algorithm are 
offered, including (1) Initialization process and 
Clustering (2) Position update includes, Update 
Henry's Coefficient, Update Solubility, Escape 
from local optimum, and Update position of the 

worst agents, and (3) Neighbor exchange. The 
complete stages of the proposed algorithm are 
presented in the following subsection. 

 
1) Initialization Process dan Clustering 

In this stage, the gas population (N) and the 

gas position vector are initialized according to 
equation (7). The position of the gas i in the 
population is denoted by X�. 4 is a random 
number 0 to 1. XHIJ and XH�K indicate the upper 
bound and lower bound of the problem. Iteration 
is indicated by L. Henry's constant value FM(L), 

partial pressure of gas B in cluster N (E.,M), and ∇PQRS/; constant value of N(UM) are modeled in 

equation (8). Where V%, V/, VW are constants with 
values 5S − 02, 100 and 1S − 02, respectively. X�(t + 1) = XH�K + r × (XHIJ − XH�K)      (7) 

 FM(L) = V. × 4\]^(0,1), E.,M = V/ × 4\]^(0, 1), UM =VW × 4\]^(0, 1)                (8) 

 
In the position initialization stage, each 

vector value for each gas is not allowed to have 
repeated values. The illustration of the 
initialization of the gas position vector can be 
seen in Figure 1. FCVRP is one of the 
combinatorial problems. Therefore, the HGSO 

position vector needs to be converted to discrete 
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space. This study proposes a Large Rank Value 
(LRV) procedure to transform the gas position 
vector to the travel sequence. LRV is easy to 
implement because the travel sequence is based 

on the largest position vector to the minor 
position vector (Utama, Widodo, Ibrahim, & Dewi, 
2020a)  (Utama, Baroto, & Widodo, 2020) (Utama 
& Widodo, 2021). Figure 2 is an illustration of 
converting gas position vectors to travel 
sequences with LRV. E
=  _0.54 0.11 0.610.29 0.65 0.710.38 0.43 0.99g 

   E
=  _0.54 0.61 0.610.29 0.71 0.710.29 0.99 0.99g 

(\) (h) 

Figure 1. Initialization of gas position vector  
(a) accepted gas position vector (b) rejected gas 

position vector 

In this stage, the agent population (gas) is 
divided into several groups, equivalent to the 
type of gas amount. Each cluster has the same 
gas, so the value of the Henry constant FM is the 

same. Each N cluster is evaluated to identify the 
best gas that reaches the best equilibrium 
condition from other gases. Furthermore, the 
gases are sequenced to obtain the optimal gas 

from the entire gas swarm. 
 

2) Update Position 
The gas position update is carried out every 

iteration (L). Henry's coefficient is updated each 
iteration based on equation (9). Where H_j is the 

Henry coefficient for cluster N. T indicates the 
temperature. Tj is a constant with a value of 
298.15, and the total number of iterations is 
denoted by BLk4. 

FM(L + 1) = FM(L) × exp n8−Co × (1/T(t) −
1/Tj9p ,   q(L) = exp (−L/BLk4)       (9) 

 
The solubility of the gas is also updated 

using equation (10). The partial pressure of gas B 
in cluster N is denoted E.,M , and r is a constant. C.,M 

shows the solubility of gas B in cluster N.  C.,M(L) = r × FM(L + 1) × E.,M(L)      (10) 

The gas position vector update is formulated 

in equation (11). Where, s(.,M) describes the 

position of gas B in cluster N. 4 denotes a random 

value from 0 to 1, and L is the L-th iteration. The 
best gas B in cluster N is denoted s(.,tuPv), and the 

best gas in the swarm is formulated with stuPv . In 
addition, the ability of gas B in cluster N to interact 

with other gases is formulated as w. x shows the 
effect of other gases on gas B in cluster N, which 
has a value of 1 and is a constant. y is a flag that 
changes the direction of the search agent. The 
fitness value of gas B in cluster N is formulated as y.,M . ytuPv is the best gas fitness of the gas. The 

best gas B in cluster N is denoted as s(.,tuPv). stuPv 

is the best gas in the swarm. s.,M(L + 1) = s.,M(L)  + y × 4zw
× ns.,tuPv(L) − s.,M(L)p + y × 4 × x
× 8C.,M(L) × stuPv(L) − s.,M(L)9 

w = { × kz| }− ~����(v):�
~,,�(v):� � , � = 0,05 (11) 

 
The escape from the local optimum 

procedure is performed in each iteration to avoid 
the local optimum solution. This procedure is 

modeled in equation (12). This procedure sorts 
the worst agents (��). Thus, N is the number of 
search agents. Furthermore, the next step is to 
update the position of the worst agents. This 
stage is formulated in equation (13). The position 
of gas B in cluster N is denoted as �(.,M).  4 is a 

random number between 0-1. GHIJ and GH�K 

show the upper bound and lower bound of the 
problem. �� = � × (4\]^(�/ − �%) + �%) , �% = 0,1 dan �/ =0,2                  (12) 

 �(.,M) = �H�K (.,M) + 4 × 8�HIJ (.,M) − �H�K (.,M)9 (13)  

 
3) Neighborhood Exchange 

In this section, HGSO performance is 
improved with Neighborhood Exchange rules. 
HGSO archives the temporary solution and the 
best gas position vector for each iteration. Three 

rules of Neighborhood Exchange were adopted, 
namely, slide, flip, and swap, which are used to 
increase the solution performance at iteration t in 
each iteration. The slide is a Neighborhood 
Exchange rule by changing the position of the gas 
vector. One position vector for the gas is chosen 
randomly, then randomly transferred to one 
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vector. The illustration of this rule is shown in 
Figure 3. The flip rule is made by inverting the gas 
position vector. Two gas position vectors are 
selected randomly, and the vector is then 

reversed. This rule is illustrated in Figure 4. The 
Swap Rule is a rule for exchanging gas position 
vectors for two position vectors. Two gas position 
vectors are randomly selected to be replaced. This 

illustration is shown in Figure 5. This study 
suggests that each neighborhood exchange rule 
is repeated in each iteration 0.1 x the number of 
customers. Each neighborhood exchange is 

compared with the previous solution. The best 
solution is stored as the best solution in iteration L. The complete pseudo-code of the HHGSO 
algorithm is presented in Algorithm 1. 

 

Figure 2. Illustration of converting gas position vector to travel sequence with LRV 

 

Figure 3. Illustration of Slide rules 

 

Figure 4. Illustration of the Flip rule 

 

Figure 5. Illustration of swap rules 
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Data and Experimental 

Data 
This study used data instances presented in 

previous studies. In addition, data on the number 
of nodes, demand, distances were taken from the 
research of Dantzig and Ramser (1959) and 
Gaskell (1967). Node Numbers and Vehicle 
Capacity as shown in Table 1. The increase in fuel 

consumption (�) for each additional 45.35-
kilogram load (�) was 2%. 

In 12 node instances, distance and demands 
between nodes are shown table 2. Table 3 
describes Coordinate and demands at 22 nodes.  

It is converted to be distance using equation (14). 
 d(
�� )(
����) = �(s. − s.:%)/ + (�. − �.:%)/  (14) 

 

Algorithm 1 Pseudo-code algorithm HHGSO 

Initialization: s.(1 = 1,2, . . �), number of gas types I, FM , E.,M , UM , V%, V/ and VW 

Sort the position using the Large Rank Value (LRV) method to get the vehicle route 
Convert  the vehicle route into sub route 
Divide the population agents into some gas types (cluster) with the same henry’s constant 

value (FM) 

Evaluate each cluster N 
Get the best gas s.,tuPv in each cluster, and the best search agent stuPv  

while L < maximum number of iteration do 
      for each search agent do 
            update the positions of all search agents using Eq (11) 
      end for 
      Update Henry’s coefficient of each gas type using eq (9) 
      Update solubility of each gas using eq (10) 
      Rank and select the number of worst agent using Eq (12) 
      Update the position of the worst agents using Eq (13) 
      Update the best gas s.,tuPv and the best search agent stuPv  

for i = 0: 0.1 × n 
  Perform slide on X�,��&� position 

  if (evaluate (X�,��&�) < evaluate (X��&�)) 
   X��&� = X�,��&� 
  end if 
end for 
for i = 0: 0.1 × n 
  Perform flip on X�,��&� position  

  if (evaluate (X�,��&�) < evaluate (X��&�)) 
   X��&� = X�,��&� 
       end if 
end for 
for i = 0: 0.1 × n 
  Perform swap on  X�,��&� position  

  if (evaluate (X�,��&�) < evaluate (X��&�)) 
   X��&� = X�,��&� 
  end if 
end for 
 
end while � = � + � 
Return stuPv  
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Table 1. Node Numbers and Vehicle Capacity 

Number of Nodes Vehicle Capacity Sources 

12 6000 Dantzig and Ramser (1959)  

22 4500 Gaskell (1967)  

 

Table 2. Distance and demands between nodes at 12 node instances 

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 Demand 

0 0 9 14 21 23 22 25 32 36 38 42 50 52 1200 

1 9 0 5 12 22 21 24 31 35 37 41 49 51 1700 

2 14 5 0 7 17 16 23 26 30 36 36 44 51 1500 

3 21 12 7 0 10 21 30 27 37 43 31 37 39 1400 

4 23 22 17 10 0 19 28 25 35 41 29 31 29 1700 

5 22 21 16 21 19 0 9 10 16 22 20 28 30 1400 

6 25 24 23 30 28 9 0 7 11 13 17 25 27 1200 

7 32 31 26 27 25 10 7 0 10 16 10 18 20 1200 

8 36 35 30 37 35 16 11 10 0 6 6 14 16 1900 

9 38 37 36 43 41 22 13 16 6 0 12 12 20 1800 

10 42 41 36 31 29 20 17 10 6 12 0 8 10 1600 

11 50 49 44 37 31 28 25 18 14 12 8 0 10 1700 

12 52 51 51 39 29 30 27 20 16 20 10 10 0 1100 
 

Table 3. Coordinat and demands at 22 node instances 

Node X Y Demand 

0 266 235 0 

1 295 272 125 

2 301 258 84 

3 309 260 60 

4 217 274 500 

5 218 278 300 

6 282 267 175 

7 242 249 350 

8 230 262 150 

9 249 268 1100 

10 256 267 4100 

11 265 257 225 

12 267 242 300 

13 259 265 250 

14 315 233 500 

15 329 252 150 

16 318 252 100 

17 329 224 250 

18 267 213 120 

19 275 192 600 

20 303 201 500 

21 208 217 175 

22 326 181 75 
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Table 4 Fuel Consumption on case 12 node 

Iteration 

KPL 9.35 KPL 12.8 KPL 16.25 

Gas Number Gas Number Gas Number 

30 40 50 30 40 50 30 40 50 

100 48.712 48.712 48.712 35.583 35.583 35.582 28.028 28.028 27.476 
200 48.712 45.521 43.476 35.583 35.582 31.595 28.028 28.028 25.015 

300 45.521 43.476 43.476 35.583 31.595 31.595 28.028 25.015 25.015 

Bold shows the smallest fuel consumption 

Table 5 Fuel Consumption on case 22 node 

Iteration 

KPL 9.35 KPL 12.8 KPL 16.25 

Gas Number Gas Number Gas Number 

30 40 50 30 40 50 30 40 50 

100 135.754 135.754 135.754 99.163 99.163 99.163 78.110 78.110 78.110 
200 100.952 101.919 101.919 99.163 99.163 99.163 78.110 78.110 53.741 
300 101.919 101.919 92.410 99.163 74.560 73.248 78.110 53.741 48.332 

Bold shows the smallest fuel consumption 

Table 6 Computation time for 12 nodes 

Iteration 

KPL 9.35 KPL 12.8 KPL 16.25 

Gas Number Gas Number Gas Number 

30 40 50 30 40 50 30 40 50 

100 5.732 6.775 8.579 5.280 6.189 8.791 5.270 8.664 8.954 
200 10.843 13.752 16.896 11.043 13.596 16.388 10.734 13.567 16.439 
300 15.317 19.486 25.354 15.960 19.196 24.105 15.997 19.129 25.924 

Table 7 Computation time for 22 nodes 

Iteration 

KPL 9.35 KPL 12.8 KPL 16.25 

Gas Number Gas Number Gas Number 

30 40 50 30 40 50 30 40 50 

100 7.007 9.523 11.715 7.666 9.829 12.041 7.722 9.135 11.467 
200 13.880 15.546 16.822 13.951 15.270 16.110 13.231 15.602 17.313 
300 20.193 23.927 27.100 20.131 23.521 27.396 20.314 23.286 28.644 

 

 

Figure 6. The results of the comparison of the algorithm to fuel consumption 
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Figure 7. Comparison of algorithm results on computation time 
 

Table 8 REP results comparison algorithm 

Algorithm REP 12 Node REP 22 Node Average 

SA 0.000 0.354 0.177 

TS 0.126 0.354 0.240 

HPSO 0.000 0.018 0.009 

 
 

Experimental 
The experiment was designed to determine 

changes in the number of gas, iteration, and KPL 
on fuel consumption and computation time. 
These have 3 data variations. The parameter 
number of gas used is 30, 40, and 50 gases. The 
iteration parameter utilized 100, 200, and 300 
iterations. For KPL parameters, this study used 

9.35, 12.8, and 16.25 kilometers per liter. In the 
HHGSO algorithm, this research employed 5 
cluster numbers. The values of �% and �/ were 
0.1 and 0.2. In these cases, a total of 54 trials were 
applied. 

The HHGSO algorithm was also compared 

with several algorithms such as SA (Kuo, 2010), TS 
(J. Zhang et al., 2015), and HPSO  (Ali & Farida, 
2021). The comparison used was in  KPL 12.8. 
Each algorithm utilized 300 iterations. In the SA 
algorithm, this study employed the parameters 
population number = 50, Cooling rate = 0.8, and 

initial temperature = 100. In the Hybrid PSO 
algorithm, the Swarm size applied was 50, and the 
inertia weight applied was 0.6. Each experiment 
was run on Matlab 2014a software on windows 10 
AMD A12 x64-64 8GB RAM processor. 

Relative Error Percentage (REP) was used to 
measure the performance algorithm. It is 

formulated in equation (15). A high positive REP 

indicated that the proposed algorithm 
outperformed another algorithm. However, a 

negative REP showed that the proposed 
algorithm was not competitive compared to other 
algorithms. 

 

REP = ����� �_¢£¤¥����¦$��§�¥§¥¨ ©_¢£¤¥����¦��§�¥§¥¨ ©_¢£¤¥����¦ × 100%       (15) 

III. RESULT AND DISCUSSION 

Experimental results of HHGSO parameter 

changes 

This section presents the experimental 
results of HHGSO parameter changes on fuel 
consumption and computation time. The 
experimental results of changing HHGSO 
parameters on fuel consumption in 12 and 22 

nodes are presented in Tables 4 and 5. Tables 6 
and 7 describe the results of the computational 
time of experimental changes in HHGSO 
parameters. The experimental results show that 
the resulting fuel consumption becomes smaller 
when the gas number and iteration parameters 
increase. However, the computational time 

required is increasing. The results of this study are 
under the findings of Ali and Farida (2021), which 
states that iteration parameters and algorithm 
population affect fuel consumption. 
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In the experiment of changing the KPL on fuel 
consumption, the results show that when the KPL 
is increased, the resulting fuel consumption is 
smaller. Interestingly, this result is that when the 

KPL is changed at the same iteration and 
population, the resulting computational time is 
relatively the same. It shows that the KPL changes 
do not affect the same iteration and gas number 
computation time. 
 
Algorithm Comparison 

The results of the comparison of the 
algorithm to fuel consumption are shown in 
Figure 6. These results indicate that, in the case of 
12 nodes, the proposed algorithm produces the 
same fuel consumption as SA and HPSO. 

However, the proposed algorithm is better than 
the TS algorithm. In the case of 22 Nodes, the 
proposed algorithm is better than HPSO, SA, and 
TS. Thus, It shows that the proposed algorithm 
effectively solves FCVRP problems. 

The results of the REP algorithm comparison 

are presented in table 8. In the case of 12 nodes, 
the proposed algorithm produces the same 
solution as the SA and HPSO algorithms. It is 
evident from the REP value is 0. However, the REP 
value in the TS algorithm has a positive value. It 
indicates that the proposed algorithm is better 

than TS for the case of 12 nodes. In the case of 22 
nodes, the REP SA, TS, and HPSO values produce 
values > 0. It shows that the proposed algorithm 
is better for the case of 22 nodes. The average 
REP results show that the proposed algorithm has 
better performance because the REP value of the 
proposed algorithm is more than 0. 

The results of comparing algorithms on 
computational time are presented in Figure 7. 
These results show that the SA algorithm has the 
lowest computational time, followed by the 
HHGSO, HPSO, and TS algorithms. Although this 
SA algorithm produces the lowest computation 

time, the resulting fuel consumption is not 
optimal. The proposed HHGSO algorithm has 
better computational time than HPSO and TS. In 
addition, the computational time carried out by 
the proposed HHGSO algorithm is directly 
proportional to the resulting fuel consumption. 

Therefore, the HHGSO algorithm is effective for 
solving FCVRP problems. 

IV. CONCLUSION 

This study addressed the FCVRP problem by 
proposing a new algorithm HHGSO. Experiments 
were carried out with various variations of 
iteration parameters and gas numbers. The results 
show that the gas number and iteration 

parameters affect fuel consumption and 
computation time. The proposed HHGSO 
algorithm produced lower fuel consumption than 
other algorithms based on the comparison 
algorithm. It is evident from the REP value of the 
comparison algorithm. In addition, the 
computational time generated by HHGSO can 

compete with the TS and HPSO algorithms. 
However, this research is limited to solving the 
problem of 1 distribution center. Future studies 
need to consider multi-distribution centers in the 
case of FCVRP. 
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