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Robust Multi-Objective Optimization Model for the Integration of 
Blood Production and Distribution Planning  
Shearly Christina Tanjung1a, Eric Wibisono1b, Dina Natalia Prayogo1c   

Abstract.  Blood is a very important element for humans. Currently, The Blood Transfusion Unit of The Indonesian 
Red Cross in City “X” determines the amount and type of blood to be processed based on stock availability. This 
method tends to be subjective so that the possibility of error in production decision is fairly high. This research 
intends to manage that the blood processing process and allocation can be carried out optimally and on target. The 
research objectives are to minimize the number of blood shortages, expired blood, and the total costs incurred, by 
applying a robust optimization method that considers the uncertainty of blood demand and the disturbances in the 
blood production process. Pass data of demands will be used for forecasting demand in the planning period. The 
forecast results can be adjusted to current conditions using the adjustment ratios. The robust optimization method 
can produce decisions that tend to be stable even when there are changes in blood demand. The results obtained in 
this study were 24% decrease in the number of shortages of blood stock, 88% decrease in the amount of expired 
blood, and 96% decrease in the overproduction cost. 
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I. INTRODUCTION1 
Planning the production and distribution 

process of blood is very important since blood is 
an important and critical element for human life. 
In the midst of the COVID-19 pandemic, there has 
been a decline in the number of donors who are 
willing and qualified to donate blood. The Blood 
Transfusion Unit of The Indonesian Red Cross 
(BTU-IRC) in City “X” determines the amount and 
type of blood to be produced based on the 
number of depleting stocks. This method tends to 
be subjective so that the possibility of production 
error is high. The Government Regulation 
Number 7 Year 2011 stated that blood can only 
be issued by BTU-IRC, and there is no transfer of 
blood between hospital blood banks. In 2020, 
there was 0.9% of the total production of red cell 
type blood that was expired and had to be 
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destroyed due to overproduction. It is therefore 
necessary to integrate blood production and 
distribution planning so that blood supply can be 
accurate and efficient. 

Blood obtained from donors is still in the 
form of whole blood (whole blood). Some of the 
blood will still be stored as whole blood and 
some will be separated into several blood 
products. One of the results of the separation is 
packed red cell (PRC). There are two types of 
blood prepared from packed red cells (PRC), 
namely leukoreduced PRC (PCR) and 
leukodepleted PRC (PCLs). Both blood 
preparations were the result of leukocyte filtration 
from PRC, but the leukocyte content of 
leukodepleted PRC is lower than that of 
leukoreduced PRC. This blood type has a useful 
life of 35 days from the time it is received from 
the donor. Limitations of types and groups that 
cannot substitute freely with each other, storage 
age, storage conditions of blood, and most 
importantly the limited amount of blood supply 
make the problem of planning the production 
and distribution of blood more complex than 
other products. 

This study aims to: (1) minimize the shortage 
of the required blood type stock by forecasting 
the demand for blood for each type and blood 
group every week, and (2) design an integration 
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of blood production and distribution planning 
using the robust multi-objective optimization to 
minimize the amount of shortage of blood stock, 
expired blood, and the total costs incurred by 
BTU-IRC City “X”. In this study, only red cell types 
(packed red cell, leukoreduced packed red cell, 
and leukodepleted packed red cell) are discussed. 
The method used in this research is pre-emptive 
goal programming that works by the concept of 
prioritizing. Solving problems with this method 
will prioritize the achievement of the objective 
function with higher priority before processing 
the other objective functions with lower priority. 
The model is said robust because it considers 
elements of uncertainty especially in the data of 
demand and can still perform well and stable 
despite changes in some data parameters. 

Blood products are very critical to sustain 
life. Obtaining blood from blood donors is not 
easy because donating blood is a voluntary 
activity. Blood products are perishable and their 
quality decrease rapidly over the transportation 
period. There are other products with similar 
nature such as agricultural products. However, 
compared to the latter, the availability of blood 
products is critical in a much shorter time span 
and it could mean life or death to someone. 
Therefore, the logistics and supply chain of blood 
products need to be carefully and precisely 
planned. 

Despite its importance, research in blood 
transportation is few. The last literature review is 
dated a decade ago (Beliën & Forcé, 2012), citing 
nearly a hundred of articles classified based on 
the blood type, solution method (simulation, 
integer programming, etc.), hierarchical level of 
the blood banks, the problem type (inbound 
versus outbound), the data approach (stochastic 
versus deterministic), the optimization approach 
(exact versus heuristic), performance measures, 
and the case studies. 

Current research on blood supply chain and 
logistics is quite diverse in terms of breadth and 
depth. Mishra et al. (2021) employed a qualitative 
study by means of survey to identify factors 
affecting good inventory management of blood 
which put staff training at the top of the list, 
followed by managerial practices such as 

stringent allocation policy, diligent record-
keeping, daily stock review, monthly performance 
reports, preventive maintenance of equipment, 
robust blood bank information system, 
communication with stakeholders, and effective 
leadership. Other qualitative research deals with 
risk management for blood supply chain. These 
include Boonyanusith & Jittamai (2019) who used 
the House-of-Risk model in the risk assessment 
process to arrive at strategic recommendation 
that enhancing the collaboration is the most 
proactive action to manage risks in the blood 
supply chain, followed by information sharing, 
and demand and supply statistical analysis. The 
research, however, does not offer tactical or 
operational suggestions. In a similar vein, 
Cagliano et al. (2021) offered a comprehensive 
and structured approach to proactively identify 
and analyze logistics risks as well as define 
responses to improve blood bag traceability, 
focusing on hospital wards. The authors 
emphasized the needs for specific key 
performance indicators to enable an improved 
communication flow among actors that can 
uncover residual risks. 

In the quantitative department, more diverse 
approaches are reported in the literature. Liu et al. 
(2020) applied one classical supply chain 
technique, vendor-managed inventory, in the 
scheduling of blood distribution. The authors 
proposed an integration of a decomposition-
based algorithm with an adaptive large 
neighborhood search. Another classical 
application such as in location-allocation and 
inventory management is demonstrated by 
Hosseini-Motlagh et al. (2020). In this paper, the 
authors formulated a bi-objective two-stage 
stochastic programming model for managing a 
red-blood-cells supply chain to minimize the total 
cost of the supply chain which includes fixed 
costs, operating costs, inventory holding costs, 
wastage costs, and transportation costs along 
with minimizing the substitution levels to provide 
safer blood transfusion services. The model is said 
robust due to the inclusion of stochastic data and 
parameters (Bertsimas & Thiele, 2006). 

In the wake of COVID-19 pandemic, a 
number of research appear stressing on the 



Jurnal Ilmiah Teknik Industri p-ISSN 1412-6869   e-ISSN 2460-4038 
 

103 
 

critical availability of blood products to help the 
health professionals battle the already-
troublesome circumstances brought by the 
situation. For example, Ghasemi et al. (2022) 
focused on the distribution of blood plasma using 
the Stackelberg game theory technique and two-
phase bi-level mixed integer linear programming 
(MILP) with the objectives to minimize the total 
costs and maximize the utility of donors. Plasma 
distribution was important back then during the 
period of vaccine unavailability. Another research 
is from Kenan & Diabat (2022) who discussed the 
shortages of blood donors due to social 
distancing and fear of leaving their homes during 
the pandemic, which resulted in disruption of 
blood supply chains. Using the two-stage 
stochastic programming where uncertainty of 
both demand and supply is considered, the 
authors suggested that bigger capacities of 
permanent collection facilities are favored over 
the mobility of temporary facilities, taking into 
account blood substitution and age-based 
demand, to reduce shortages significantly. Similar 
research is carried out by Khalilpourazari & 
Doulabi (2022), but in a slightly different scope 
and a different method, which is designing an 
emergency blood supply chain network design 
problem using a multi-objective Transportation-
Location-Inventory-Routing (TLIR). Focusing on 
blood donors in blood supply chain, however, is 
not a new approach. Prior to the above three, 
Ramezanian & Behboodi (2017) have modeled a 
supply chain network design under uncertainties 
using a MILP formulation. They formed a utility 
function using parameters which include distance 
of blood donors from blood facilities, experience 
factor of donors in blood facilities, and 
advertising budget in blood facilities. In general, it 
is important to note that the logistics of blood 
products are in the category of crisis logistics 
which are not the same as ordinary logistics and 
require a different treatment (Razavi et al. 2020). 

Other research worth mentioning given their 
uniqueness is as follows. Fallahi et al. (2021) 
designed a closed-loop blood supply chain 
network considering transportation flow and 
quality aspects. The closed-loop being considered 
was related to use of reusable blood 

transportation boxes. Last but not least, Meidute-
Kavaliauskiene et al. (2022) and Hamadneh et al. 
(2021) discussed the importance of visibility in 
blood supply chain. The former proposed 
implementing blockchain to increase visibility and 
to achieve successful implementation of the 
blockchain, the involved parties must pass the 
first critical step in identifying and removing the 
barriers that hinder effective tracing of blood 
supply. The latter, using a case study in Scotland, 
argued that such visibility is important and plays a 
vital role for effective response to emergencies 
under demand and supply shortages. 

This paper is different from the above 
research mainly in the method used. While some 
of the above cited research considered dual 
objectives, none of them considered more than 
two objectives. In this research, three objectives 
will be formulated and pre-emptive goal 
programming will be used to solve the three 
objectives following the set priorities. The model 
is a MILP which also considers uncertainties in 
some of the data. The model is said robust if its 
solution is still valid under varying circumstances 
such as change in some of the parameters. 

II. RESEARCH METHOD 
This research was conducted in several 

stages. The first stage was the collection of 
primary data (data on blood demand, the 
percentage of blood type production of red cells 
from the total blood production, the percentage 
of each blood group from the total demand, and 
data on blood acquisition) from BTU-IRC in City 
“X” and secondary data (data related to costs and 
distances between location) from various other 
sources. 

The second stage was to perform data 
processing that would be used as input to the 
optimization model. The data processing carried 
out was the calculation and processing of cost 
data including several assumptions used, 
forecasting blood demand for each blood type, 
forecasting blood acquisition, and calculating the 
required safety stock. The cost data used in this 
study were operational costs, storage costs, 
expired blood costs, blood shortages costs, and 
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transportation costs. Data on blood demand each 
month in the previous period were used to 
forecast blood demand. After forecasting the 
demand for blood, the forecasting results were 
adjusted to be more in line with the current 
conditions by using a multiplier, namely the 
adjustment ratios. These adjustment ratios could 
be changed depending on circumstances. The 
results of forecasting blood demand in months 
were divided into demand forecasting results in 
weeks because the optimization of blood 
production and distribution planning uses a 
weekly period. Monthly blood acquisition data in 
the previous period obtained were forecasted for 
the next period, then the results of the 
forecasting of blood collection were converted 
into units of weeks. In this study, safety stock was 
used to anticipate an increase in blood demand 
and avoid blood shortages. The amount of blood 
safety stock for each type and group was 
determined based on the results of the mean 
square deviation (MSD) error from forecasting 
using a service level of 98%. 

The third stage was the development of an 
optimization model that fit with the conditions at 
BTU-IRC in City “X”. After all the data had been 
processed, they were used as the parameters for 
the optimization process. The results of the 
optimization process in this study were compared 
to the actual data in BTU-IRC in City “X” under 
several assumptions due to some data limitation. 

This study was conducted to integrate blood 
distribution and production planning in “X”. The 
flow of blood starting from the collection can be 
seen on Figure 1. 

The blood is gathered from the blood 
collection at several locations of the mobile blood 
facility and BTU-IRC in City “X”. All the blood 
obtained is processed at the BTU-IRC in City “X” 
and then stored in the BTU-IRC in City “X” 
storage. Every blood bank that needs blood 
should submit a request to BTU-IRC in City “X” 
(there are three types of blood storage locations, 
namely BTU-IRC in City “X”, internal blood bank of 
BTU-IRC in City “X”, and hospital blood bank) by 
considering the lifespan of the blood. If the blood 
has exceeded the lifespan, it is separated and 
categorized as expired blood which will then be 

destroyed. Patients who need blood transfusions 
can submit a request to the hospital blood bank 
and the internal blood bank of BTU-IRC in City 
“X”. 

The demand for blood in “X” is not always 
the same, and it varies from low, normal, and 
high. In this study, several demand scenarios and 
disruptions that can occur were used. There were 
several conditions in this study, namely: 
 Blood production disruptions may happen at 

BTU-IRC in City “X”. 
 The number of vehicles owned by BTU-IRC in 

City “X” is limited. 
 The type of blood given is always the same as 

the type of blood requested. If the stock is not 
available, it will be counted as shortage. 

 Every location has its own storage facility. 
 There is a blood shortage cost per bag which 

is calculated every time there is a blood 
shortage and wastage cost for every expired 
blood bag. 

 The earlier stock of blood is used first 
according to the FIFO rules. 

 There is only one lifespan of blood since the 
type of blood in this study has the same 
lifespan. 

The indices are: 
𝑗 ∈ 𝐽 : represents the mobile blood facility  
ℎ ∈ 𝐻 : represents the blood bank 
𝑠 ∈ 𝑆 : represents the demand scenario 
𝑠ᇱ ∈ 𝑆′ : represents the disturbance scenario 
𝑡 ∈ 𝑇 : represents the periods 

 

Figure 1.  The process of blood transportation.  
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𝑟 ∈ 𝑅 : represents the raw blood 
𝑏 ∈ 𝐵 : represents the blood type 

The parameters are: 
𝑂𝐿 : Operational cost of blood treatment 
𝐻𝐿 : Storage cost at BTU-IRC in City “X”   
𝐻𝐻 : Storage cost at blood bank 
𝑊𝐿௕ : Excess cost for every type b blood bag 

at BTU-IRC in City “X”  
𝑊𝐿௕௛ : Excess cost for every type b blood bag 

at blood bank  
𝐶𝐿௕ : Shortage cost for every type b blood 

bag at BTU-IRC in City “X”  
𝐶𝐿௕௛ : Shortage cost for every type b blood 

bag at hospital blood bank 
𝑀𝐿௝ : Transport cost from mobile blood 

facility j to BTU-IRC in City “X”  
𝐿𝐻௛ : Transport cost from BTU-IRC in City “X” 

to blood bank h 
MTC : The maximum capacity of the vehicles 

used  
𝐶𝑎𝑝𝐿 : Storage capacity at BTU-IRC in City “X” 
𝐶𝑎𝑝𝐻௛  : Storage capacity at blood bank h 
𝑁 : The number of vehicles available at 

BTU-IRC in City “X”  
𝐿𝑇 : Blood lifespan 
𝐷௕௛௧

௦  : The number of type b blood request at 
blood bank h during the t period 

𝑝𝑑௦ : Probability of demand scenario s 
𝑝𝑝௦ᇲ : Probability of disruption scenario s’ 
𝐴𝑀௥௝ : The amount of blood type r supply at 

mobile blood facility j 
𝐴𝐿௥ : The amount of blood type r supply at 

BTU-IRC in City “X” 
𝐹𝑊௥௧ : The number of whole blood r request 

during t period 
𝑑𝑖𝑠௦ᇲ : Percentage of disruption s’ 
𝐼0௕ : The amount of initial type b blood 

inventory at BTU-IRC in City “X”  
𝐼′0௕௛ : The amount of initial type b blood 

inventory at blood bank h 
𝑜𝑎௕௧

௦௦ᇲ : The number of expired type b blood 
bags at BTU-IRC in City “X” during the 
initial LF period under the s and s’ 
scenarios 

𝑜′𝑎௕௛௧
௦௦ᇲ  : The amount of expired type b blood 

bag at blood bank h during the initial LF 
period under the s and s’ scenarios 

The decision variables are: 
𝑍௝௧ : 1 if there is a blood draw at mobile blood 

facility j during the t period, 0 otherwise 
𝑢௛௧

௦௦ᇲ : 1 if there is a blood transport from BTU-
IRC in City “X” to blood bank h during the 
t period under the s and s’ scenarios, 0 
otherwise 

𝑞௕௛௧
௦௦ᇲ  : The number of type b blood bags taken 

from BTU-IRC in City “X” to blood bank h 
pada during the t period under the s and 
s’ scenarios 

𝐼௕௧
௦௦ᇲ : The amount of type b blood stock at 

BTU-IRC in City “X” during the t period 
under the s and s’ scenarios 

𝐼′௕௛௧
௦௦ᇲ  : The amount of type b blood stock at 

blood bank h during the t period under 
the s and s’ scenarios 

𝑜௕௧
௦௦ᇲ : The number of expired type b blood bags 

at BTU-IRC in City “X” during t period t 
under the s and s’ scenarios 

𝑜ᇱᇱ
௕௛௧
௦௦ᇲ

 : The number of expired type b blood bags 
at blood bank h during t period t under 
the s dan s’ scenarios 

𝑒௕௟௧
௦௦ᇲ : The amount of type b blood processed at 

BTU-IRC in City “X” during the t period 
under the s and s’ 

𝑛௕௧
௦௦ᇲ : The number of shortages of type b blood 

at BTU-IRC in City “X” during the t period 
under the s and s’ scenarios 

𝑛𝑛௕௛௧
௦௦ᇲ  : The number of shortages of type b blood 

at blood bank h during the t period 
The mathematical model is presented at the 

end of the paper and can be explained below. 
The objective function (1) aims to minimize 

the number of blood shortages, the objective 
function (2) aims to minimize the amount of 
expired blood, and the third objective function (3) 
aims to minimize the total costs incurred. The 
total cost consists of several cost components, 
namely operational costs, storage costs, excess 
costs, transportation costs, and shortage costs. 
The cost components that make up the total cost 
cannot be obtained directly. The calculation of 
the cost components is given in equations (4)-(8). 
Additional constraints in the study are given in 
(9)-(24). 



Tanjung et al./ Robust Multi-Objective Optimization Model for the Integration … JITI, Vol.22(1), Jun 2023, 101-112 

106 
 

Constraint (9) limits the number of vehicles. 
Constraint (10) is to manage the blood processing 
from raw blood to the type of blood that will be 
distributed to all blood banks. Constraints (11)-
(15) direct the amount of processing, shipping, 
and storage of blood. Constraints(16)-(19) are 
related to the expired blood. Constraints (20)-(22) 
are the storage capacity. Constraints (23)-(24) are 
the nature of decision variables. 

Constraints (1)-(24) were run with each of the 
three objective functions separately. The optimal 
results were the minimum blood shortage, 
expired blood, and total cost. These results then 
underwent robustness test using a different set of 
objective functions. 

The objective functions (25)-(27) are the 
combined objective functions of the gap between 
the combined optimization results and the 
optimization results from each scenario 
combination and the expected combined results. 
The calculation of each component in the 
objective functions (25)-(27) is obtained from 
equations (28)-(30) and constraints (31)-(33). 
Equations (34)-(41) are the formulas for fuzzy 
interactive. These can be broken down as follows. 
Equations (34)-(36) are used to obtain a negative 
ideal solution for each objective function. 
Equation (37) is used to calculate 𝜇௜(𝑥) which is 
the fuzzy membership value of each objective 
function (in the range of 0 to 1). The higher the 
value of fuzzy membership, the better. The 
objective function (38) is the objective function to 
maximize all fuzzy membership values. Constraint 
(39) is to find the lowest fuzzy membership value 
from the three fuzzy membership values to be 
maximized. Constraint (40) aims to run all the 
previous constraints except the objective 
function. Constraint (41) is to keep the value of 𝜏଴ 
between 0 to 1. 

The preceding model was run in Lingo. The 
model in (1)-(24) was run first for each 
combination of demand and disruption scenarios 
using pre-emptive goal programming, i.e. the first 
objective function was executed first and then the 
results became constraints for solving the second 
objective function, and likewise, the results in the 
second optimization became the constraints for 
the third optimization process for the third 

objective function. These steps were repeated six 
times because there were six different 
combinations of demand and disruption 
scenarios. 

The output from each combination of 
scenarios was used to test the robustness of the 
results. To run the robustness test, a different set 
objective functions were used, which are (25)-(27), 
added with (28)-(30) and constraints (31)-(33). 
The three objective functions were executed one 
by one and repeated three times because there 
were three main objective functions. The 
minimum values from running three by three 
objective functions became the positive ideal 
solution whereas the maximum values became 
the negative ideal solution. 

Both the positive and negative ideal 
solutions were used to run the objective function 
(38) which aims to maximize the fuzzy 
membership value of the entire objective 
function. The purpose of using this method was 
to find the best results that can be obtained by 
the three objective functions. 

III. RESULT AND DISCUSSION 
Data on demand for red cells blood type 

(PRC, PCR, and PCLs) every month in 2019-2020 
were used to forecast demand in the next period. 
Before determining the forecasting method to be 
used, it was necessary to plot the data first to find 
out the shape of the demand pattern in the 
previous period. The method used to forecast the 
demand for each blood type shown in Table 1.  

The selected forecasting method was based 
on the demand pattern and the lowest mean 
square deviation (MSD). Here, the adjustment 
ratio was used as a multiplier. This adjustment 

Table 1. Forecasting method of demand for each 
type of blood 

Type of blood Forecasting method 
PRC Trend analysis (linear) 

PCR 
Seasonal variation with trend 

using additive model 

PCLs 
Seasonal variation with trend 

using additive model 
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ratio was used to adjust the results of demand 
forecasting to current conditions. The results of 
the adjustment for forecasting blood demand 
were still in the form of forecasting data for each 
type of blood (PRC, PCR, and PCLs) which were 
divided for each blood group using the 
percentage of demand data for each blood type 
in 2020. The results of forecasting blood demand 
for each type and blood type are given in Table 2. 

Forecasting results in months were 
converted into weeks because production and 
distribution planning were carried out every week. 
The conversion of forecasting results into week 

time units was carried out using the coefficient of 
variance approach. The variation in weekly 
demand was higher than the variation in monthly 
demand, so the coefficient of variance in monthly 
demand in 2020 was used to determine the 
coefficient of variance every week. 

Blood collection data from various blood 
donation locations were forecasted based on 
blood collection data in 2020. The method used 
to forecast the collection of blood demand in 
2021 can be seen in Table 3 and the forecast 
results for each blood type are in Table 4. 

The blood collection was reduced by the 
amount of blood that remains whole blood and 
was not processed into PRC, PCR, and PCLs. The 
amount of blood that remained whole blood was 
obtained by forecasting the demand based on 
2020 data. The results of forecasting the demand 
for whole blood type for each blood group is 
shown in Table 5. 

Blood demand at BTU-IRC in City “X” varies 
in each period and not all estimations of the 
increase or decrease in blood demand can be 
estimated by forecasting the demand. Therefore, 
several variations of demand scenarios and safety 
stock were used in this study. Safety stock is the 
minimum number of blood bags that must always 
be available to avoid a shortage of blood stock 
when there is a surge in demand. Calculation of 
the number of safety stock was obtained with the 
help of MSD error results for each forecasting of 
blood demand. Safety stock for each blood type 
can be seen in Table 6. 

After all the required data is available, then 
the data were used as input in the optimization 
process using the objective functions and 
constraints that had been described previously for 
8 weekly periods. In this study, three variations of 
demand scenarios (low, medium (normal) and 
high demand) and two types of disruption 
scenarios (production failure and screening) had 
their respective probabilities. The data for the 
medium demand scenario was forecasted data, 
while the data for the low demand scenario was 
obtained by lowering the medium demand 
scenario data by 20% and the data for the high 
demand scenario was obtained by adding 20% of 
the medium demand scenario data. Each 

Table 2. Forecasting results of blood demand 

Month Type 
23% 27% 9% 41% 

Type A 
(bag) 

Type B 
(bag) 

Type AB 
(bag) 

Type O 
(bag) 

Jan. 
2021 

PRC 1,449 1,716 576 2,579 
PCR 125 148 50 222 
PCLs 66 78 26 117 

Feb. 
2021 

PRC 1,506 1,783 598 2,680 
PCR 150 178 60 267 
PCLs 60 71 24 107 

Table 3. Blood collection forecasting method 

Blood type Forecasting method 

A 
Seasonal variation with trend using 

additive model 

B 
Seasonal variation with trend using 

additive model 
AB Trend analysis (linear) 

O 
Seasonal variation with trend using 

additive model 

Table 4. Results of blood collection forecast 

Month 
Type A 
(bag) 

Type B 
(bag) 

Type 
AB 

(bag) 

Type 
O 

(bag) 
Jan. 2021 1,853 2,531 656 3,317 
Feb. 2021 2,124 2,985 680 3,954 

 

Table 5. Whole blood demand forecast 

Month 
23% 27% 9% 41% 

Type A 
(bag) 

Type B 
(bag) 

Type AB 
(bag) 

Type O 
(bag) 

Jan. 2021 197 233 78 351 
Feb. 2021 178 211 71 317 
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combination of demand and disturbance 
scenarios was run to obtain the optimization 
results of the objective function of each 
combination, namely minimizing blood shortage, 
expired blood, and total cost. The results of these 
optimizations were used to run a combined 
optimization of all scenarios. The results of 
minimizing blood shortage, expired blood, and 
total cost as the objective function of this 
combined optimization were the expectation of a 
shortage of 624 bags of blood stock, 16 bags of 
expired blood, and the expected total cost of 
Rp6,156,731,323. This total cost consisted of 
operational costs for blood processing, blood 
storage costs, expired blood costs, blood 
transportation costs, and fees charged whenever  
there was a shortage of blood stock. From the 
results of this optimization, it can also be seen 
that the expected number of blood processing 
was 15,948 bags, the expected number of blood 
storage in BTU-IRC in City “X” was 11,714 bags, 
and the expected number of blood storage in all 
blood banks was 3,510 bags. 

The results of the optimization in the study 
were compared with the actual conditions at BTU-
IRC in City “X”. Compared output includes the 
number of blood shortages, expired blood, blood 
production or processing, the cost of taking 

blood from various locations, the cost of sending 
blood to each blood bank, and the costs due to 
excess blood production. All differences between 
the data on blood requests and blood donations 
at BTU-IRC in City “X” City were counted as blood 
shortages. The comparison is shown in Table 7. 

The number of blood shortages in the actual 
condition was 834 bags, and it was obtained with 
the assumption that all differences between 
blood demand and blood supply were 
categorized as shortage. The amount of expired 
blood in actual conditions was obtained from the 
percentage of expired blood in 2020 that as much 
as 0.9% of the total blood production was not 
used until it had passed its lifespan, so it had to 
be destroyed. The decrease in the number of 
blood shortages in the proposed model was 
23.98% and the number of expired blood was 
87.50%. 

The amount of blood production in the 
proposed model was higher than the actual 
condition due to the higher demand forecasting 
results than the actual demand, but the number 
of blood shortages that occurred in the proposed 
model was lower. The cost of taking blood in the 
proposed model was known from the 
optimization results, while the cost of taking 
blood in actual conditions was obtained with the 
assumption that each blood collection location 

Table 7. Comparison of optimization results and 
actual condition 

Variable Optimization Actual 
% 

Change 
Blood shortage 
(bag) 

634 834 -24% 

Expired blood 
(bag) 

16 128 -88% 

Production 
number (bag) 

15,948 14,170 13% 

Blood collection 
cost (Rp) 

822,152 656,799 25% 

Blood 
transportation 
cost (Rp) 

1,011,947 NA NA 

Over production 
cost (Rp) 

878,099 23,056,281 -96% 

 
Table 6. Safety stock for each blood type 

Blood type 

Number of safety stock (bag) 

Low 
Demand 
Scenario 

Medium 
Demand 
Scenario 

High 
Demand 
Scenario 

A PRC 104 138 173 
A PCR 81 108 135 
A PCLs 51 68 85 
B PRC 113 150 188 
B PCR 88 117 146 
B PCLs 56 74 93 
AB PRC 65 87 109 
AB PCR 51 68 85 
AB PCLs 32 43 54 
O PRC 138 184 230 
O PCR 107 143 179 
O PCLs 68 90 113 
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was only visited once per month. The cost of 
sending blood was the cost for sending blood to 
all hospital blood banks. In actual conditions, it 
was not possible to know the cost of sending 
blood due to the limited data obtained. The cost 
of excess blood production was the cost that 
arose when the blood that had been produced 
was not used until it was expired and had to be 
destroyed. 

IV. CONCLUSION 
The optimization model proposed in this 

study is a robust multi-objective optimization 
model that aims to minimize the number of blood 
shortages, the amount of expired blood, and the 
total costs incurred by considering the 
uncertainty of demand and disruption factors in 
the blood processing process. By forecasting 
blood demand, the results of blood production 
decisions become more precise, so that the 
number of shortages and expiration of blood is 
lower. In the proposed model, there was a 
decrease in the number of blood shortages by 
23.89% and a decrease in the amount of expired 
blood by 87.5%. With the application of the 
robust optimization method, the Indonesian Red 
Cross Blood Transfusion Unit Surabaya can make 
decisions related to blood production and 
distribution planning. In addition, from this 
proposed model, the expected number of blood 
shortages, excess blood, and the total costs 
incurred can be estimated. However, in this study 
there were several assumptions used due to data 
limitations. In addition, the proposed model in 
this study did not cover all blood types. 
Therefore, for further research, it is recommended 
to complete any required data so that the results 
obtained are more precise and develop models  
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