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No-Wait Flowshop Permutation Scheduling Problem: Fire Hawk 
Optimizer Vs Beluga Whale Optimization Algorithm 

Muhammad Aghniya Baihaqi1a, Dana Marsetiya Utama1b 

Abstract.  No-Wait Flowshop Permutation Scheduling Problem (NWPFSP) is a scheduling problem that states that 
every job completed on machine n must be processed immediately on the next machine. The NWPFSP problem is an 
extension of the flowshop problem. This article proposes two new algorithms fire hawk optimization and beluga 
whale optimization, to solve the NWPFSP problem and minimize makespan. The two new algorithms developed to 
solve the NWPFSP problem are tested on three different cases. Each algorithm was run 30 times and was compared 
using an independent sample t-test. The results were also compared with the Campbell Dudek Smtih algorithm. In 
addition, the effectiveness of the FHO and BWO algorithms was assessed against the CDS algorithm using the 
Relative Error Percentage (REP) method. The results show that the FHO and BWO algorithms are better at solving 
NWPFSP problems when compared to the CDS algorithm. However, the BWO algorithm is more recommended in 
cases with large data because it can provide better results. 
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I. INTRODUCTION1 
Production scheduling is one of the 

important stages before the start of production 
activities to complete jobs effectively and 
efficiently. Product completion time must be 
taken into account by the company. Production 
delays can cause losses to the company because 
it can reduce customer confidence in the 
company. (Nadia, Dewi, & Sianto, 2017; Michael L. 
Pinedo, 2012). The objectives of scheduling 
include increasing productivity and reducing idle, 
reducing production process time, reducing 
customer waiting time, and reducing energy 
consumption (Baker & Trietsch, 2009, 2013). A 
common problem in production is the inaccuracy 
in order delivery due to non-optimal production 
schedules. The company needs to estimate how 
long it will take to complete the order or when it 
will be ready to be shipped to the customer 
(Hernanda & Hariastuti). In addition, scheduling 
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problems are also caused by limited facilities and 
the number of machines, which results in jobs 
experiencing queues when they are processed 
because the machines are busy (Baker & Trietsch, 
2013; M. L. Pinedo, 2016). 

Flowshop scheduling problems naturally 
arise in many conditions, as there are many 
practical and essential applications for jobs to be 
processed sequentially with more than one 
processing stage in the industry. (Firmansyah, 
Utomo, & Irawan, 2016; Grabowski & Pempera, 
2005). In many flowshop scheduling, there is a 
constraint that once the processing of a job starts, 
the subsequent processing must be done without 
any delay in the machining process from machine 
to machine. If necessary, the start of job 
processing is delayed on the first machine so that 
the job does not have to wait for processing on 
the next machine. Such a flowshop can be 
referred to as a 'no-wait flowshop (Rajendran, 
1994; Ye, Li, & Miao, 2016). Many industries use 
no-wait flowshop scheduling systems to perform 
scheduling systems on production processes, 
such as the chemical industry (Raaymakers & 
Hoogeveen, 2000; Rajendran, 1994), steel and 
aluminum production (Wismer, 1972), plastic 
molding (Ding, Song, Zhang, Gupta, & Wu, 2015), 
pharmaceutical industry (Raaymakers & 
Hoogeveen, 2000) and many more industries that 
use this system. (Ye et al., 2016). Thus, this 
flowshop scheduling problem is interesting to be 
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studied further, especially the no-wait 
permutation flowshop scheduling problem 
(NWPFSP). 

There are many kinds of research focusing 
on NWPFSP. Bertolissi (2000) proposed a 
Heuristic algorithm for scheduling in the no wait 
flowshop. Rajendran (1994) proposed A No-wait 
Flowshop Scheduling Heuristic to minimize the 
makespan value. Nailwal, Gupta, and Jeet (2016) 
also proposed A heuristic for no-wait flow shop 
scheduling. In addition, some studies take an 
approach by applying new algorithms to solve the 
NWPFSP problem. Pan, Wang, and Zhao (2008) 
proposed An improved iterated greedy algorithm 
Pan, Wang, and Qian (2009) with A novel 
differential evolution. Engin and Güçlü (2018) with 
A new hybrid ant colony optimization algorithm. 

Although many studies have been proposed 
related to NWPFSP, only a few use the latest 
algorithms to solve NWPFSP. Studies that have 
used metaheuristic algorithms to solve NWPFSP 
are Pan et al. (2008), Engin and Güçlü (2018), and 
Pan et al. (2009). Unfortunately, these studies did 
not focus on makespan minimization. Since there 
are few studies, this research proposes Fire Hawk 
Optimizer (FHO) and Beluga Whale Optimization 
(BWO) algorithms for makespan minimization in 
NWPFSP. The FHO algorithm is a new algorithm 
that mimics the behavior of a Hawk in searching 
for its prey, proposed by Azizi, Talatahari, and 
Gandomi (2022). Likewise, BWO, an algorithm 
that mimics the behavior of beluga whales in 
nature proposed by Zhong, Li, and Meng 
(2022).FHO has been used in various studies, such 
as in BIM-Based Resource Tradeoff in Project 
Scheduling Using Fire Hawk Optimizer (FHO). 
Shishehgarkhaneh, Azizi, Basiri, and Moehler 
(2022). However, the BWO algorithm has never 
been proposed for NWPFSP problem solving. 

Based on these reasons, we conclude that 
the NWPFSP problem in makespan minimization 
needs further investigation using new advanced 
algorithms. FHO and BWO algorithms were 
chosen because they are new and have never 
been applied or tested in solving NWPFSP 
problems focusing on makespan minimization. 
Therefore, this study's Research Goals (GR) are as 
follows: (RG 1). Developing the latest algorithms, 

namely FHO and BWO in solving NWPFSP 
problems with the goal of makespan 
minimization; (RG 2). Analyzing the effectiveness 
of using FHO and BWO algorithms in NWPFSP 
with the goal of makespan minimization. Based 
on the RGs, it is clear that this research 
contributes to science by providing a new 
reference or alternative solution in solving 
NWPFSP that focuses on makespan minimization. 
Furthermore, this research also encourages 
researchers and practitioners to expand their 
research scope in similar areas. 

The structure of this article is described as 
follows: Section 1 is the background of this 
research. The method and proposed algorithm 
are presented in section 2. Section 3 will present 
the research data and the results of the research 
that has been carried out. Finally, section 5 
presents the conclusions obtained from the 
research results. 

II. RESEARCH METHOD 
This section describes the notation and 

mathematical model of the NWPFSP problem. 
Figures 1 and 2 show differences related to the 
permutation flowshop scheduling problem (PFSP) 
and NWPFSP. PFSSP is a generalization of the 
flowshop scheduling problem (FSP) in which jobs 
are allowed and processed in the same job order 
on all machines to minimize the amount of 
completion time (Iqbal, 2014). NWPFSP is a case 
where 𝑛 jobs are processed in the same order on 
𝑚 machines, and no job is allowed to wait 
between consecutive operations until the entire 
process is completed. Thus, the start of a job on 
the first machine may be delayed to satisfy the 
no-wait constraint.(Guevara-Guevara, Gómez-
Fuentes, Posos-Rodríguez, Remolina-Gómez, & 
González-Neira, 2022) 

The difference between FSSP and NWPFSP in 
Figures 1 and 2, illustrated by Makuchowski 
(2015). 

 
Figure 1. Permutation Flowshop 
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Figure 2. No-wait Permutation Flowshop 

 
Notations and Formulation of Mathematical 
models 

The problem in this case has the following 
assumptions: (1) sequential jobs or no pre-
emption; (2) all jobs and machines are ready at 
time t=0; (3) machines are ready to use or in 
prime condition; (4) each machine only performs 
one task at a time; (5) the next task can be done if 
the machine has completed the previous task; (6) 
setup and removal times are included in the 
processing time. 

Notations and mathematical models in solving 
NWPFSP to minimize makespan are as follows (Ye 
et al., 2016): 
π   Sequence for n jobs, π = [J1, J2, …, Jj-1, 

…,Jn]; 
n   Number of jobs; 
m   Number of machines; 
Pj,I Process time for job j on machine I, where 

j-1, ..., n and i-1, ..., m; 
STj,I  start time of job j on machine i;; 
CTj,i  job completion time for job j on machine i; 
d   The potential distance between the job 

completion time of job j-1 and the job 
start time of job j on machine i; 

Dj-1j  the distance between the completion times 
of two adjacent jobs on the last machine. 

ST , = CT ,  where  j = 1, 2, …  n        (1) 
 
ST , = ST + ∑ P ,  where j =

              1, 2, … , n and i = 1, 2, …,                                     
(2) 
 
CT , = CT , − ∑ P ,  where j = 1, 2, … , n and i =

              1, 2, … , m               (3) 
 
d , = ST ,  − CT ,  = ST ,  − CT ,  + ∑ P , +

                ∑ P ,   
 = ∑ P , + ∑ P ,          (4) 

 
D , =  ∑ P , − min d , =  ∑ P , −

                 min{ } ∑ P , + ∑ P ,     
 =  max{ } ∑ P , + ∑ P ,       (5) 

 
The formula in equation (1) assumes that the 

start time of job j on the last machine is the same 
as the finish time of job j-1 on the previous 
machine. Since there is no waiting time on each 
machine for each job, the starting time of job j on 
machine i and the finishing time of job j-1 on 
machine i are formulated in equations 2 and 3. 
The distance between the starting time of job j 
and the finishing time of job j-1 is formulated in 
equation (4). The potential distance between the 
starting time on job j and the completion time on 
job j-1 can be reduced by shifting job j to the left, 
which can be formulated in equation (5). 

So that to find the completion time or 
makespan value can be formulated in equation 
(6): 
 
C (π) =  ∑ P , + ∑ D ,        (6) 
 
Proposed Algorithm 

This section will explain the proposed FHO and 
BWO procedures in solving the makespan 
minimization problem in the NWPFSP case. 

 
Fire Hawk Optimizer 

FHO is one of the new metaheuristic 
algorithms proposed by Azizi et al. (2022). Hawks' 
behavior inspires this algorithm to hunt prey by 
spreading fire in the hunting area. The Hawk will 
take a burning stick and drop it in another 
unburned place to start a small fire. This small fire 
scares the prey and forces them to flee hastily 
and nervously so that the Hawk can catch them 
more easily. This research will solve the makespan 
minimization problem in the NWPFSP case using 
FHO.  

The first stage of Fire Hawk Optimizer is 
initialization. Several candidate solutions (X) are 
initially defined as the position vectors of the Fire 
Hawk and its prey. A random initialization process 
is used to identify the initial positions of these 
vectors in space. The formulation of the position 
vectors is as in equations 7 and 8. 
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⎥
⎥
⎥
⎤

          (7) 

 
X (0) =  X ,  + rand. X , −

                 X , ,
i = 1, 2, … , N
j = 1, 2, … , d

         (8) 

 
Where d represents the dimension of the 

problem under consideration; then Xi represents 
the i-th solution candidate in the search space; N 
is the total number of solution candidates in the 
search space; X  (0) represents the initial position 
of the solution candidate; X  is the j-th decision 
variable of the i-th solution candidate;  X  min and 
X  max are the minimum and maximum limits of 
the j-th decision variable for the i-th solution 
candidate; and rand is a uniformly distributed 
random number in the range [0,1]. 

Next is to determine the location of the Fire 
Hawk in the area by evaluating the objective 
function for the candidate solution considering 
the selected optimization problem formulated in 
equations 9 and 10. Where F  is the 1-th Fire 
Hawk considering the total number of n Fire 
Hawks in the search space, and P  is the k-th prey 
in the search space considering the total number 
of m prey. 
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PR
PR

⋮
PR

⋮
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⎥
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, k = 1, 2, … , m,           (9) 

 

FH =  

⎣
⎢
⎢
⎢
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PH
PH

⋮
PH

⋮
PH ⎦

⎥
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⎥
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⎤

, k = 1, 2, … , n,              (10) 

 
The next phase calculates the distance 

between the Fire Hawk and the intended prey. 
The calculation of the total distance between the 
Fire Hawk and the intended prey is formulated in 
equation 11. 

 

𝐷  (𝑥 − 𝑥 ) +  (𝑦 −  𝑦 )  ,
𝐼 = 1, 2, … , 𝑛.
𝑘 = 1, 2, … , 𝑚.

,  (11) 

Where (x1, y1) and (x2, y2) represent the 
coordinates of the Fire Hawk and prey in the 
search space; m is the total number of prey in the 
search space; n is the total number of Fire Hawks 
in the search space; and 𝐷  is the total distance 
between the 1st Fire Hawk and the k-th prey. In 
the next phase of the algorithm is the position 
update procedure in the main search loop of 
FHO, as shown in equation 12. 
 

FH =  FH + (r × GB −  r  FH ), I =

                   1, 2, … , n,                  (12) 
 

Where FH  is the new position vector of the 
1-th Fire Hawk (FHl); GB is the global best 
solution in the search space considered as the 
main fire; FH  is one of the other Fire Hawk in 
the search space; and r1 and r2 are uniformly 
distributed random numbers in the range of (0,1) 
to determine the Fire Hawk movement towards 
the main fire and the other Fire Hawk territory. 

In the next phase of the algorithm, the 
movement of prey within each Fire Hawk territory 
is considered a key aspect of animal behavior for 
the position update process. This action can be 
considered in the position update process using 
equation 13. 

 
PR = PR +  (r × FH −  r  ×  SP ),

I = 1, 2, … , n.
q = 1, 2, … , r.

  

(13) 

 

Where SP  is the safe place under the lth Fire 
Hawk territory; r3 and r4 are uniformly distributed 
random numbers in the range of (0, 1) to 
determine the prey's movement towards the Fire 
Hawk and the safe place. While PR  is the new 
position vector of the q-th prey (PR ) surrounded 
by the 1-th Fire Hawk (FH ); GB is the best 
solution in the search space which is considered 
as the main fire. 

In addition, the prey can move toward another 
Fire Hawk territory, and it is possible that the prey 
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can get closer to the Fire Hawk near the ambush 
or even try to hide in a safer place outside the 
Fire Hawk territory where they are trapped. These 
actions can be considered in the position update 
process using equation 14. 

 
PR = PR +  (r × FH −  r  ×

                  SP),
I = 1, 2, … , n.
q = 1, 2, … , r.

            (14) 

 
Where FH  is one of the other Fire Hawks in  

the search space; PR  is the new position vector 
of the q-th prey (PRq) surrounded by the 1-th Fire 
Hawk (FH ); SP is a safe place outside the territory 
of the lth Fire Hawk; r5 and r6 are uniformly 
distributed random numbers in the range of (0,1) 
to determine the movement of prey towards 
other Fire Hawks and safe places outside the 
territory. 

Based on the fact that safe havens in nature 
are places where most animals congregate to stay 
safe and healthy during danger, the mathematical 
presentation of SPI and SP are formulated in 
equations 15 and 16. 

 
SP  =  

∑
,

q = 1, 2, … , r.
I = 1, 2, … , n.

           (15) 

 
SP =  

∑
, k = 1, 2, . . . , m.          (16) 

PRq is the qth prey surrounded by the lth Fire 
Hawk (FHI); PRk is the kth prey in the search 
space. 

 
Beluga Whale Optimization 

The BWO algorithm is inspired by the behavior 
of beluga whales during beluga whale swimming, 
preying, and whale fall proposed by Zhong et al. 
(2022). This research will solve the makespan 
minimization problem in the NWPFSP case with 

Figure 3. Fire Hawk Optimizer 

procedure Fire Hawk Optimizer (FHO) 
Determine initial positions of solution candidates (X;) in the search space with N candidates 
Apply LRV 
Evaluate fitness values for initial solution candidates 
Determine the Global Best (GB) solution as the main fire 
while Iteration <  Maximum number of iterations 

Generate n as a random integer number for determining the number of Fire Hawks 
Determine Fire Hawks (FH) and Preys (PR) in the search space 
Calculate the total distance between the Fire Hawks and the preys 
Determine the territory of the Fire Hawks by dispersing the preys 
for I=1:n 

Determine the new position of the Fire Hawks by Eq. 12. 
for q=1:r 

Calculate the safe place under Ith Fire Hawk territory by Eq. 15. 
Determine the new position of the preys by Eq. 13.  
Calculate the safe place outside the Ith Fire Hawk territory by Eq. 16. 
Determine the new position of the preys by Eq. 14. 

end 
end 
Apply LRV 
Evaluate fitness values for the newly created Fire Hawks and preys 
Determine the Global Best (GB) solution as the main fire 

end while 
return GB 

end procedure 
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three stages in BWO. The stages in BWO are 
described as follows: (1) Initiation Phase, (2) 
Exploration Phase, and (3) Whale Fall. 

Since BWO is population-based, beluga 
whales are considered search agents, and each is 
also considered a candidate solution. So the 
position matrix is modeled in equation 17. 

 

X =  

𝑥 , 𝑥 , … 𝑥 ,

𝑥 , 𝑥 , … 𝑥 ,

⋮ ⋮ ⋮ ⋮
𝑥 , 𝑥 , … 𝑥 ,

           (17) 

 

Where n is the population size of beluga 
whales, d represents the dimension of the design 
variable. The corresponding fitness values are 
modeled for all beluga whales in equation 18. 

 

𝑓 =  

⎣
⎢
⎢
⎡

𝑓(𝑥 , , 𝑥 , , … , 𝑥 , )

𝑓(𝑥 , , 𝑥 , , … , 𝑥 , )

⋮
𝑓(𝑥 , , 𝑥 , , … , 𝑥 , )⎦

⎥
⎥
⎤

         (18) 

 
The algorithm can change from exploration to 

exploitation depending on the equilibrium factor 
𝐵  modeled by equation 19. 

Figure 4. The pseudo code of BWO algorithm 

Algorithm : The pseudo code of BWO algorithm 
Input: Algorithmic parameters (population size, maximum iteration) 
Output: The best solution 
1:            Initialize the population, Apply LRV,  and evaluate fitness values, obtain the best solution (P*) 
2:            While T≤Tmax Do 
3:                Obtain probability of whale fall Wf by Eq. (26) and balance factor Bf by Eq. (19) 
4:                For each beluga whale (Xi) Do 
5:                    If Bf (i) > 0.5 
6:                        // In the exploration phase 
7:                        Generate pj (j = 1,2,…,d) randomly from dimension 

8:                        Choose a beluga whale Xr randomly 
9:                        Update new position of i-th beluga whale using Eq. (20) 
10:                  Else If Bf (i) ≤ 0.5 
11:                      // In the exploitation phase 
12:                      Update the random jump strength C1 and calculate the Levy flight function 
13:                      Update new position of i-th beluga whale using Eq. (21) 
14:                  End If 
15:                  Check the boundaries of new positions, Apply LRV, and evaluate the fitness values 
16:              End For 
17:              For each beluga whale (Xi) Do 
18:                  // the whale fall phase 
19:                  If Bf (i) ≤ Wf 
20:                      Update the step factor C2 
21:                      Calculate the step size Xstep 
22:                      Update new position of i-th beluga whale using Eq. (24) 
23:                      Check the boundaries of new position, Apply LRV, and calculate fitness value 
24:                  End If 
25:              End For 
26:              Find the current best solution P* 
27:              T = T+1 
28:          End While 
29:          Output the best solution 
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𝐵  = 𝐵 (1 − )                   (19) 

Where 𝐵  changes randomly between (0,1) at 
each iteration, T is the current iteration, and Tmax 
is the maximum number of iterations,. The 
exploration stage occurs when the equilibrium 
factor 𝐵  > 0.5 while the exploitation stage occurs 
when 𝐵  = 0.5. As the iteration T increases, the 
fluctuation range of 𝐵  decreases from (0, 1) to (0, 
0.5), illustrating a significant change in probability 
for the exploitation and exploration phases, while 
the probability of the exploitation phase increases 
as the iteration T increases. 
 
Exploration Phase 

In the exploration phase, BWO is performed by 
considering the swimming behavior of beluga 
whales. Therefore, the position of the search 
agent is determined by the swimming pair of the 
beluga whale, and the position of the beluga 
whale is updated by modeling in equation 20. 

 
𝑋 , = 𝑋 , + 𝑋 , + 𝑋 , (1 + 𝑟 ) sin(2𝜋𝑟 ) , 𝑗 = 𝑒𝑣𝑒𝑛

𝑋 , = 𝑋 , + 𝑋 , + 𝑋 , (1 + 𝑟 ) sin(2𝜋𝑟 ) , 𝑗 = 𝑜𝑑𝑑

(20) 
Where T is the current iteration, 𝑋 ,  is the 

position of the i-th beluga whale at dimension pj, 
𝑋 , is the new position of the i-th beluga whale 
at dimension j, pj (j = 1, 2, ... , d) is a random 
number selected from the d-dimension, 𝑋 ,  and 
𝑋 ,  are the current positions for the i-th and r-th 
beluga whales (r is a randomly selected belug`a 
whale), r1 and r2 are random numbers between 
(0, 1), sin (2πr2) and cos (2πr2) means the beluga 
whale fins are mirrored towards the surface. 
Based on the dimensions chosen by the odd and 
even numbers, the updated position reflects 
synchronous behavior when swimming or diving. 
Two random numbers r1 and r2 are used to 
enhance the random operator in the exploration 
phase. 

 
Exploitation Phase 

The preying behavior of beluga whales 
inspires BWO's exploitation phase. Beluga whales 
can cooperatively forage and move according to 
the location of nearby beluga whales. Therefore, 

beluga whales prey by sharing position 
information, considering the best candidate and 
others. This phase also uses the Levy Flight 
strategy (Mantegna, 1994) to improve 
convergence. Mathematical modeling in the 
exploitation phase is formulated in equation 21. 

𝑋 = 𝑟 𝑋 − 𝑟 𝑋 + 𝐶 × 𝐿 × (𝑋 − 𝑋 )    (21) 

Where T is the current iteration, 𝑋   and 𝑋  are 
the current positions for the i-th beluga whale 
and the random beluga whale, X is the position of 
the new position of the i-th beluga whale, 𝑋  is 
the best position among the beluga whales, r3 
and r4 are random numbers between (0,1), C1 = 
2r4(1-T/Tmax) is the random jump strength that 
measures the intensity of Levy Flight. 

𝐿  is the Levy Flight function (Mantegna, 1994) 
formulated by the mathematical model in 
equations 22 and 23. 

𝐿 = 0,05 ×
×

| | /
               (22) 

𝜎 =
( )× ( )

(( )× × ( )/

/

           (23) 

Where u and v are normally distributed random 
numbers, β is a default constant equal to 1.5. 
 
Whale Fall 

The Whale Fall phase is an inspired phase 
when beluga whales die. During migration and 
foraging, beluga whales are threatened by killer 
whales, polar bears, and humans. Most beluga 
whales are intelligent and can escape threats by 
sharing information. However, many beluga 
whales do not survive and fall to the bottom of 
the deep sea. This phenomenon, called "whale 
fall", feeds many creatures. 

To ensure the sum of the population size is 
constant, the position of the beluga whales and 
the size of the Whale Fall step are used to 
establish the latest position. The mathematical 
model is expressed in equation 24. 

𝑋 = 𝑟 𝑋 − 𝑟 𝑋 + 𝑟 𝑋            (24) 

𝑋   is the Whale Fall step size modeled in 
equation 25. While 𝑟 , 𝑟 , and 𝑟  represent random 
numbers between (0.1). 

𝑋 = (𝜇 − 1 )exp ( )           (25) 
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ub and lb are the upper and lower limits of the 
variable, respectively. The variable C2 is a step 
factor related to the probability of whale fall and 
population size (C2=2Wf×n). The step size is 
affected by the boundaries of the design 
variables, iterations and the maximum iterative 
number. The probability of Whale Fall (𝑊 ) can be 
calculated as a linear function in equation 26. 

𝑊 = 0.1 − 0.05𝑇/𝑇              (26) 

The probability of Whale Fall decreases from 
0.1 at the beginning of the iteration to 0.05 at the 
last iteration, indicating that as the beluga whale 
gets closer to the food source during the 
optimization process, the danger of the beluga 
whale decreases. 

 
Largest Rank Value 

According to research by Li and Yin (2013) 
LRV is an effective way of mapping job 
permutations. Where the first largest value is 
selected as the first order of job permutation. 
After that, select the second largest value as the 
second order in the work. This experiment will 
apply LRV in sorting FHO and BWO positions in 
determining a job sequence. An illustration of the 
use of LRV is shown in Figure 5, which refers to 

research conducted by D. M. Utama. 
 

 
Figure 5. Largest Rank Value 

 
Experimental data and procedures 

The first research data use the data in table 1 
published by Nailwal et al. (2016) with a problem 
of 5 jobs with 3 machines, referred to as Case 1 
and belongs to the small data category. The 
second research data use Table 2 published by 
Carlier (1978) Car 06 with a problem of 8 jobs 
with 9 machines called Case 2 and belongs to the 
medium data category. The third research data 
use data in table 3 published by Reeves (1995) 
Rec 09 with a problem of 20 jobs with 10 
machines called Case 3 and belongs to the big 
data category. 

III. RESULT AND DISCUSSION 
Algorithm Test Results  

Table 1. Reasearch data case 1 

Job 
 Machine  

Machine 1 Machine 2 Machine 3 
1 3 2 4 
2 4 5 3 
3 1 4 5 
4 1 3 2 
5 4 3 7 

Table 2. Reasearch data case 2 

Job 
Machine 

1 2 3 4 5 6 7 8 9 
1 887 447 234 159 201 555 463 456 753 
2 799 779 567 267 478 444 123 789 21 
3 999 999 852 483 520 120 456 630 427 
4 666 666 140 753 145 142 789 258 520 
5 663 25 222 420 699 578 876 741 142 
6 333 558 558 159 875 965 543 36 534 
7 222 886 965 25 633 412 210 985 157 
8 114 541 412 863 222 25 123 214 896 
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This section describe and explain the results of 
the study by considering the effect of different 
population numbers and the number of iterations 
on Makespan. In addition, this section will 
compare the effectiveness of the FHO algorithm 
with the CDS algorithm shown in tables 4 and 5 in 
determining the makespan value. 

Table. 4 Makespan calculation results with CDS 
method 

Reaserach 
data 

Number of Machines 
and Jobs 

Makespan 

Case 1 5 job and 3 machine 30 
Case 2 8 job and 9 machine 12334 
Case 3 20 job and 10 machine 2628 

 
The test results in Table 4 and Table 5 show 

that the FHO and BWO algorithms get a better 
makespan value when compared to the CDS 
algorithm. In addition, after testing, it is known 
that the number of populations and the number 

of iterations will affect the calculation results of 
the FHO and BWO algorithms. The higher the 
population and iterations used, the better the 
makespan results will be compared to the 
population size and the small number of 
iterations, especially if the data tested is large 
data. 

 
Comparison of Algortima Testing Results 

This section describes the results of testing 
the FHO and BWO algorithms and the results of 
the independent sample t-test. 

After testing the data 30 times in Table 6, the 
independent sample t-test was continued. 
According to McMillan and Schumacher (2010) 
the independent sample t-test is an inferential 
statistical procedure to determine the possibility 
of rejecting the null hypothesis that the two 
results are the same. So, in this study, the 
independent sample t-test test was used to 

Table 3. Reasearch data case 

job  
Machine 

1 2 3 4 5 6 7 8 9 10 
1 77 95 41 97 47 45 10 41 72 8 
2 99 28 42 4 7 30 65 45 51 94 
3 74 25 92 29 4 21 47 36 61 9 
4 4 21 40 80 66 85 1 33 1 4 
5 49 95 96 74 96 63 59 84 70 29 
6 53 59 75 19 13 50 82 60 9 13 
7 88 47 28 11 86 90 93 38 33 59 
8 92 99 84 13 73 55 19 93 74 25 
9 2 49 86 46 58 42 24 79 12 17 

10 97 18 28 77 92 54 49 24 19 71 
11 28 93 93 7 25 89 49 11 93 45 
12 64 22 91 56 46 27 32 70 94 5 
13 25 96 98 51 21 20 93 64 86 11 
14 19 41 87 15 31 78 54 74 71 6 
15 81 1 74 56 8 55 3 92 28 5 
16 9 29 49 48 72 38 26 3 49 80 
17 5 74 19 27 71 35 52 76 79 47 
18 8 66 40 71 17 61 84 49 52 56 
19 34 7 58 94 22 27 40 19 26 77 
20 13 56 45 27 40 26 90 28 27 88 

 



Jurnal Ilmiah Teknik Industri p-ISSN 1412-6869   e-ISSN 2460-4038 
 

133 
 

determine whether there was a difference 
between the FHO and BWO test results. In 
addition, it aims to find out which one is more 
effective in solving NWPFSP in reducing 
makespan. The results of the independent sample 
t-test are shown in Table 7. 

IV. CONCLUSION 
In this study, researchers proposed the FHO 

and BWO algorithms to minimize makespan in 
the No-Wait Flowshop Scheduling Problem. Test 
results show where the FHO and BWO algorithms 
are better when compared to the CDS algorithm. 

The FHO and BWO algorithms, when used in 
small data case studies, provide the same 
makespan value, so the FHO and BWO algorithms 
are recommended for use in solving NWPFSP. 
However, the test results on big data case studies 
are different. The results of the analysis on the 
independent sample t-test test show that the two 
algorithms have different results. In this test, the 
mean result of the BWO algorithm is lower than 
the FHO, so it can be concluded that BWO is 
more recommended in solving NWPFSP in large 
data case studies. In addition, the test results 
analysis shows that the number of populations 

Table 5. Makespan calculation results with FHO and BWO algorithm 

Reaserach data 
Number of Machines 

and Jobs 
Iteration Population 

Makespan 
FHO 

Makespan 
BWO 

Case 1 5 job and 3 machine 

100 
100 25 25 

300 25 25 

500 25 25 

300 
100 25 25 

300 25 25 

500 25 25 

500 
100 25 25 

300 25 25 

500 25 25 

Case 2 8 job and 9 machine 

100 
100 9690 9690 

300 9690 9690 

500 9690 9690 

300 
100 9690 9690 

300 9690 9690 

500 9690 9690 

500 
100 9690 9690 

300 9690 9690 

500 9690 9690 

Case 3 20 job and 10 machine 

100 
100 2137 2128 

300 2137 2100 

500 2101 2063 

300 
100 2099 2132 

300 2091 2058 

500 2084 2047 

500 
100 2103 2094 

300 2071 2051 

500 2071 2047 
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and the number of iterations tested will affect the 
calculation results, especially on big data. The 
greater the number of populations and iterations, 
the smaller the makespan results. Suggestions for 
future research are to compare with other 

algorithms and provide different approaches or 
goals in using the FHO and BWO algorithms. 
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