An Energy-Efficient No Idle Permutations Flow Shop Scheduling Problem Using Grey Wolf Optimizer Algorithm

Cynthia Novel Al-Imron(1*), Dana Marsetiya Utama(2), Shanty Kusuma Dewi(3),

(1) University of Muhammadiyah Malang
(2) Industrial Engineering Universitas Muhammadiyah Malang
(3) Industrial Engineering Universitas Muhammadiyah Malang
(*) Corresponding Author
DOI: https://doi.org/10.23917/jiti.v21i1.17634

Abstract

Energy consumption has become a significant issue in businesses. It is known that the industrial sector has consumed nearly half of the world's total energy consumption in some cases. This research aims to propose the Grey Wolf Optimizer (GWO) algorithm to minimize energy consumption in the No Idle Permutations Flowshop Problem (NIPFP). The GWO algorithm has four phases: initial population initialization, implementation of the Large Rank Value (LRV), grey wolf exploration, and exploitation. To determine the level of machine energy consumption, this study uses three different speed levels. To investigate this problem, 9 cases were used. The experiments show that it produces a massive amount of energy when a job is processed fast. Energy consumption is lower when machining at a slower speed. The performance of the GWO algorithm has been compared to that of the Cuckoo Search (CS) algorithm in several experiments. In tests, the Grey Wolf Optimizer (GWO) outperforms the Cuckoo Search (CS) algorithm.

Keywords

no idle permutation flow shop; energy efficiency; metaheuristic; grey wolf optimizer algorithm

Full Text:

PDF

References

Agárdi, A., Nehéz, K., Hornyák, O., & Kóczy, L. T. (2021). A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem. Symmetry, 13(7), 1131.

Chen, J.-f., Wang, L., & Peng, Z.-p. (2019). A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm and Evolutionary Computation, 50, 100557. doi:https://doi.org/10.1016/j.swevo.2019.100557

Chen, J.-f. W., Lin Peng, Zhi-ping (2019). A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm Evolutionary Computation, 50, 100557.

Della Croce, F. G., Andrea Salassa, Fabio (2021). Minimizing total completion time in the two-machine no-idle no-wait flow shop problem. Journal of Heuristics, 27(1), 159-173.

Fang, K., Luo, W., & Che, A. (2021). Speed scaling in two-machine lot-streaming flow shops with consistent sublots. Journal of the Operational Research Society, 72(11), 2429-2441.

Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240. doi:https://doi.org/10.1016/j.jmsy.2011.08.004

Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:https://doi.org/10.1016/j.ejor.2015.07.017

Ghalambaz, M., Jalilzadeh Yengejeh, R., & Davami, A. H. (2021). Building energy optimization using Grey Wolf Optimizer (GWO). Case Studies in Thermal Engineering, 27, 101250. doi:https://doi.org/10.1016/j.csite.2021.101250

Huang, Y.-Y., Pan, Q.-K., Huang, J.-P., Suganthan, P. N., & Gao, L. (2021). An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem. Computers Industrial Engineering, 152, 107021.

Li, K., & Lin, B. (2015). The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors. Energy, 86, 403-413. doi:https://doi.org/10.1016/j.energy.2015.04.013

Li, Y.-Z., Pan, Q.-K., Li, J.-Q., Gao, L., & Tasgetiren, M. F. (2021). An Adaptive Iterated Greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems. Swarm Evolutionary Computation, 63, 100874.

Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3), 772-788. doi:https://doi.org/10.1016/j.ejor.2015.08.064

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.

Nagano, M. S., Rossi, F. L., & Martarelli, N. J. (2019). High-performing heuristics to minimize flowtime in no-idle permutation flowshop. Engineering Optimization, 51(2), 185-198.

Öztop, H., Tasgetiren, M. F., Kandiller, L., & Pan, Q.-K. (2020). A novel general variable neighborhood search through q-learning for no-idle flowshop scheduling. Paper presented at the 2020 IEEE Congress on Evolutionary Computation (CEC).

Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega, 44, 41-50.

Panwar, K., & Deep, K. (2021). Discrete Grey Wolf Optimizer for symmetric travelling salesman problem. Applied Soft Computing, 105, 107298. doi:https://doi.org/10.1016/j.asoc.2021.107298

Ruiz, R., Vallada, E., & Fernández-Martínez, C. (2009). Scheduling in flowshops with no-idle machines. In Computational intelligence in flow shop and job shop scheduling (pp. 21-51): Springer.

Sathiyabhama, B., Kumar, S. U., Jayanthi, J., Sathiya, T., Ilavarasi, A. K., Yuvarajan, V., & Gopikrishna, K. (2021). A novel feature selection framework based on grey wolf optimizer for mammogram image analysis. Neural Computing and Applications, 33(21), 14583-14602.

Shao, W., Pi, D., & Shao, Z. (2017). Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion. Applied Soft Computing, 54, 164-182.

Shao, W., Pi, D., & Shao, Z. (2019). Local Search Methods for a Distributed Assembly No-Idle Flow Shop Scheduling Problem. IEEE Systems Journal, 13(2), 1945-1956. doi:10.1109/JSYST.2018.2825337

Shen, J.-n., Wang, L., & Wang, S.-y. (2015). A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion. Knowledge-Based Systems, 74, 167-175.

Sun, Z., & Gu, X. (2017). Hybrid algorithm based on an estimation of distribution algorithm and cuckoo search for the no idle permutation flow shop scheduling problem with the total tardiness criterion minimization. Sustainability, 9(6), 953.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285.

Tasgetiren, M. F., Öztop, H. G., Liang , & Pan, Q.-K. L., Xinyu. (2019). A variable iterated local search algorithm for energy-efficient no-idle flowshop scheduling problem. Procedia Manufacturing, 39, 1185-1193.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Buyukdagli, O. (2013). A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem. Computers Operations Research, 40(7), 1729-1743.

Utama, D. (2021). Minimizing Number of Tardy Jobs in Flow Shop Scheduling Using A Hybrid Whale Optimization Algorithm. Paper presented at the Journal of Physics: Conference Series.

Utama, D. M. (2019). Salp Swarm Algorithm Untuk Meminimasi Konsumsi Energi Pada Penjadwalan Flow Shop Dengan Set Up Dan Removal Time. Prosiding SENTRA (Seminar Teknologi dan Rekayasa)(5), 79-85.

Utama, D. M., Baroto, T., & Widodo, D. S. (2020). Energy-efficient flow shop scheduling using hybrid grasshopper algorithm optimization. Jurnal Ilmiah Teknik Industri, 19(1), 30-38.

Utama, D. M., Garside, A. K., & Wicaksono, W. (2019). Pengembangan Algoritma Hybrid Flowshop Three-Stage Dengan Mempertimbangkan Waktu Setup. Jurnal Ilmiah Teknik Industri, 18(1), 72-78.

Utama, D. M., & Widodo, D. S. (2021). An energy-efficient flow shop scheduling using hybrid Harris hawks optimization. Bulletin of Electrical Engineering and Informatics, 10(3), 1154-1163.

Utama, D. M., Widodo, D. S., Ibrahim, M. F., Hidayat, K., Baroto, T., & Yurifah, A. (2020). The hybrid whale optimization algorithm: A new metaheuristic algorithm for energy-efficient on flow shop with dependent sequence setup. Journal of Physics: Conference Series, 1569(2), 022094. doi:10.1088/1742-6596/1569/2/022094

Widodo, D. S., & Utama, D. M. (2020). The hybrid ant lion optimization flow shop scheduling problem for minimizing completion time.

Zhao, F., Ma, R., & Wang, L. (2021). A Self-Learning Discrete Jaya Algorithm for Multiobjective Energy-Efficient Distributed No-Idle Flow-Shop Scheduling Problem in Heterogeneous Factory System. IEEE Transactions on Cybernetics, 1-12. doi:10.1109/TCYB.2021.3086181

Zhao, F., Zhang, L., Zhang, Y., Ma, W., Zhang, C., & Song, H. (2020). A hybrid discrete water wave optimization algorithm for the no-idle flowshop scheduling problem with total tardiness criterion. Expert Systems with Applications, 146, 113166.

Zhou, Y., Chen, H., & Zhou, G. (2014). Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing, 137, 285-292.

Article Metrics

Abstract view(s): 617 time(s)
PDF: 562 time(s)

Refbacks

  • There are currently no refbacks.