Evaluating Economic and Environmental Impact of A Plastic Waste Processing Industry nased on Circular Economy using Benefit-Cost Analysis

Asep Ridwan(1*), Triwin R. Ambarwaty(2), Nuraida Wahyuni(3), Dyah L. Trenggonowati(4), Achmad Bahauddin(5), Ani Umyati(6), Bobby Kurniawan(7),

(1) Universitas Sultan Ageng Tirtayasa
(2) Universitas Sultan Ageng Tirtayasa
(3) Universitas Sultan Ageng Tirtayasa
(4) Universitas Sultan Ageng Tirtayasa
(5) Universitas Sultan Ageng Tirtayasa
(6) Universitas Sultan Ageng Tirtayasa
(7) Universitas Sultan Ageng Tirtayasa
(*) Corresponding Author
DOI: https://doi.org/10.23917/jiti.v21i2.19751


Plastic has played a dominant role in human life as its usage is increasing over time. Plastic waste can harm the environment because plastic is not biodegradable. A collaboration adopted from the quintuple helix model was initiated by the local government of Cilegon, Indonesia, industry, and community to tackle the plastic waste problem. Plastic waste from households and industry is collected and processed in the plastic waste processing industry using the pyrolysis method producing gasoline, diesel, and kerosene. Kerosene is used by the community as fuel for cooking, whereas diesel and gasoline are used as boat fuels by fishermen. The collaboration is expected to provide economic and environmental benefits for the people in the Cilegon area. We conducted a cost and benefit analysis to evaluate the feasibility of this project from an economic and ecological point of view. The results will be used as input for conducting similar projects in other cities.


quintuple helix model; plastic waste; economic and ecological impact; benefit-cost analysis.

Full Text:



Babalola, M. (2020). A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment Alternatives: The Case of Oita City, Japan. Sustainability, 12(5), 1916. https://doi.org/10.3390/su12051916

Cropper, M. L., Guttikunda, S., Jawahar, P., Lazri, Z., Malik, K., Song, X.-P., & Yao, X. (2018). Applying Benefit-Cost Analysis to Air Pollution Control in the Indian Power Sector. Journal of Benefit-Cost Analysis, 10(S1), 185–205. https://doi.org/10.1017/bca.2018.27

Csukás, B., Varga, M., Miskolczi, N., Balogh, S., Angyal, A., & Bartha, L. (2013). Simplified dynamic simulation model of plastic waste pyrolysis in laboratory and pilot scale tubular reactor. Fuel Processing Technology, 106, 186–200. https://doi.org/10.1016/j.fuproc.2012.07.024

Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171–197. https://doi.org/10.1016/j.tsep.2017.06.003

Dobraja, K., Barisa, A., & Rosa, M. (2016). Cost-benefit Analysis of Integrated Approach of Waste and Energy Management. Energy Procedia, 95, 104–111. https://doi.org/10.1016/j.egypro.2016.09.030

Fivga, A., & Dimitriou, I. (2018). Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment. Energy, 149, 865–874. https://doi.org/10.1016/j.energy.2018.02.094

Genc, A., Zeydan, O., & Sarac, S. (2019). Cost analysis of plastic solid waste recycling in an urban district in Turkey. Waste Management & Research, 37(9), 906–913. https://doi.org/10.1177/0734242x19858665

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/sciadv.1700782

Gong, X., Kung, C.-C., & Zhang, L. (2020). An economic evaluation on welfare distribution and carbon sequestration under competitive pyrolysis technologies. Energy Exploration & Exploitation, 39(2), 553–570. https://doi.org/10.1177/0144598719900279

Gradus, R. H. J. M., Nillesen, P. H. L., Dijkgraaf, E., & van Koppen, R. J. (2017). A Cost-effectiveness Analysis for Incineration or Recycling of Dutch Household Plastic Waste. Ecological Economics, 135, 22–28. https://doi.org/10.1016/j.ecolecon.2016.12.021

Ismiandini, A. A., Yuniar, R., & Hikmawan, M. D. (2020). Implementasi Kebijakan Plastik Berbayar di Kota Cilegon. Jurnal Kebijakan Pembangunan Daerah, 4(1), 49–61. https://doi.org/10.37950/jkpd.v4i1.101

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., … Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352

Jamradloedluk, J., & Lertsatitthanakorn, C. (2014). Characterization and Utilization of Char Derived from Fast Pyrolysis of Plastic Wastes. Procedia Engineering, 69, 1437–1442. https://doi.org/10.1016/j.proeng.2014.03.139

Mangesh, V. L., Padmanabhan, S., Tamizhdurai, P., & Ramesh, A. (2020). Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. Journal of Cleaner Production, 246, 119066. https://doi.org/10.1016/j.jclepro.2019.119066

Medina-Mijangos, R., Ajour El Zein, S., Guerrero-García-Rojas, H., & Seguí-Amórtegui, L. (2021). The economic assessment of the environmental and social impacts generated by a light packaging and bulky waste sorting and treatment facility in Spain: a circular economy example. Environmental Sciences Europe, 33(1). https://doi.org/10.1186/s12302-021-00519-6

Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation, 119, 239–252. https://doi.org/10.1016/j.ibiod.2016.09.017

Murphy, E. L., Bernard, M., Iacona, G., Borrelle, S. B., Barnes, M., McGivern, A., … Gerber, L. R. (2021). A decision framework for estimating the cost of marine plastic pollution interventions. Conservation Biology, 36(2). https://doi.org/10.1111/cobi.13827

Ning, S.-K., Hung, M.-C., Chang, Y.-H., Wan, H.-P., Lee, H.-T., & Shih, R.-F. (2013). Benefit assessment of cost, energy, and environment for biomass pyrolysis oil. Journal of Cleaner Production, 59, 141–149. https://doi.org/10.1016/j.jclepro.2013.06.042

Cost-benefit analysis of rehabilitating old landfills: A case of Beiyangqiao landfill, Wuhan, China. (2020). Retrieved August 31, 2022, from Journal of the Air & Waste Management Association website: https://www.tandfonline.com/doi/full/10.1080/10962247.2020.1744488

Pacheco-López, A., Lechtenberg, F., Somoza-Tornos, A., Graells, M., & Espuña, A. (2021). Economic and Environmental Assessment of Plastic Waste Pyrolysis Products and Biofuels as Substitutes for Fossil-Based Fuels. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.676233

Quesada, L., Calero, M., Martín-Lara, M. A., Pérez, A., & Blázquez, G. (2019). Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste. Energy, 186, 115874. https://doi.org/10.1016/j.energy.2019.115874

Singh, R. K., & Ruj, B. (2016). Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 174, 164–171. https://doi.org/10.1016/j.fuel.2016.01.049

Torkashvand, J., Emamjomeh, M. M., Gholami, M., & Farzadkia, M. (2021). Analysis of cost–benefit in life-cycle of plastic solid waste: combining waste flow analysis and life cycle cost as a decision support tool to the selection of optimum scenario. Environment, Development and Sustainability, 23(9), 13242–13260. https://doi.org/10.1007/s10668-020-01208-9

Wu, D., Zhang, A., Xiao, L., Ba, Y., Ren, H., & Liu, L. (2017). Pyrolysis Characteristics of Municipal Solid Waste in Oxygen-free Circumstance. Energy Procedia, 105, 1255–1262. https://doi.org/10.1016/j.egypro.2017.03.442

Yahya, S. A., Iqbal, T., Omar, M. M., & Ahmad, M. (2021). Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia. Energies, 14(19), 6048. https://doi.org/10.3390/en14196048

Article Metrics

Abstract view(s): 377 time(s)
PDF: 241 time(s)


  • There are currently no refbacks.