Robust Multi-Objective Optimization Model for the Integration of Blood Production and Distribution Planning
(1) University of Surabaya
(2) University of Surabaya
(3) University of Surabaya
(*) Corresponding Author
DOI: https://doi.org/10.23917/jiti.v22i1.20115
Abstract
Keywords
Full Text:
PDFReferences
Beliën, J. & Forcé, H. (2012). “Supply chain management of blood products: A literature review,” European Journal of Operational Research, 217: 1–16. DOI: https://doi.org/10.1016/j.ejor.2011.05.026.
Bertsimas, D. & Thiele, A. (2006). “A Robust Optimization Approach to Inventory Theory,” Operations Research 54(1), 150–168. DOI: https://doi.org/10.1287/opre.1050.0238.
Boonyanusith, W. & Jittamai, P. (2019). “Blood supply chain risk management using house of risk model,” Walailak J Sci & Tech, 16(8): 573–591. DOI: https://doi.org/10.48048/wjst.2019.3472.
Cagliano, A. C., Grimaldi, S. & Rafele, C. (2021). “A structured approach to analyse logistics risks in the blood transfusion process,” Journal of Healthcare Risk Management, 41(2): 18–30. DOI: https://doi.org/10.1002/jhrm.21458.
Fallahi, A., Mokhtari, H. & Niaki, S. T. A. (2021). “Designing a closed-loop blood supply chain network considering transportation flow and quality aspects,” Sustainable Operations & Computers, 2: 170–189. DOI: https://doi.org/10.1016/j.susoc.2021.07.002.
Ghasemi, P., Goodarzian, F., Abraham, A. & Khanchehzarrin, S. (2022). “A possibilistic-robust-fuzzy programming model for designing a game theory based blood supply chain network,” Applied Mathematical Modelling, 112: 282–303. DOI: https://doi.org/10.1016/j.apm.2022.08.003.
Hamadneh, S., Pedersen, O., Alshurideh, M., Kurdi, B. A. & Alzoubi, H. M. (2021). “An investigation of the role of supply chain visibility into the Scottish blood supply chain,” Journal of Legal, Ethical and Regulatory Issue, 24(Special Issue 1): 1–12.
Hosseini-Motlagh, S.-M., Samani, M. R. G. & Homaei, S. (2020). “Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real‑life case),” Journal of Ambient Intelligence and Humanized Computing, 11, 1085–1104. DOI: https://doi.org/10.1007/s12652-019-01315-0.
Kenan, N. & Diabat, A. (2022). “The supply chain of blood products in the wake of the COVID-19 pandemic: Appointment scheduling and other restrictions,” Transportation Research E, 159: 102576. DOI: https://doi.org/10.1016/j.tre.2021.102576.
Khalilpourazari, S. & Doulabi, H. H. (2022). “A flexible robust model for blood supply chain network design problem,” Annals of Operations Research, Springer. DOI: https://doi.org/10.1007/s10479-022-04673-9.
Liu, W., Ke, G. Y., Chen, J. & Zhang, L. (2020). “Scheduling the distribution of blood products: A vendor-managed inventory routing approach,” Transportation Research Part E, 140: 101964. DOI: https://doi.org/10.1016/j.tre.2020.101964.
Meidute-Kavaliauskiene, I., Yazdi, A. K. & Mehdiabadi, A. (2022). “Integration of Blockchain Technology and Prioritization of Deployment Barriers in the Blood Supply Chain,” Logistics, 6(21): 1–16. DOI: https://doi.org/10.3390/logistics6010021.
Mishra, S., Daga, A. & Gupta, A. (2021). “Inventory management practices in the blood bank of an institute of national importance in India,” Journal of Family Medicine and Primary Care, 10(12): 4489–4492. DOI: https://doi.org/10.4103/jfmpc.jfmpc_1000_21.
Ramezanian, R. & Behboodi, Z. (2017). “Blood supply chain network design under uncertainties in supply and demand considering social aspects,” Transportation Research E, 104: 69–82. DOI: https://doi.org/10.1016/j.tre.2017.06.004.
Razavi, N., Gholizadeh, H., Nayeri, S. & Ashrafi, T. A. (2020). “A robust optimization model of the field hospitals in the sustainable blood supply chain in crisis logistics,” Journal of the Operational Research Society, 72(12): 2804–2828. DOI: https://doi.org/10.1080/01605682.2020.1821586.
Article Metrics
Abstract view(s): 210 time(s)PDF: 184 time(s)
Refbacks
- There are currently no refbacks.