Factor Analysis and Model of Intention to Adopt Induction Stove

Halim Qista Karima(1*), Dina Rachmawaty(2), Ade Yanyan Ramdhani(3),

(1) Institut Teknologi Telkom Purwokerto
(2) Institut Teknologi Telkom Purwokerto
(3) Institut Teknologi Telkom Purwokerto
(*) Corresponding Author
DOI: https://doi.org/10.23917/jiti.v22i1.20598


Household dependency on Liquified Petroleum Gas (LPG) gas increased Indonesian LPG imports. Therefore, the government encourages the conversion of LPG to induction stoves. However, induction stove users are less than LPG users. LPG stoves, electric stoves, and induction have their advantages and disadvantages. Consumers have different behaviours/responses to each change because each consumer has a diverse/heterogeneous character. This study analyzes the factors influencing consumer intentions to adopt an induction stove. The method used in determining factor analysis is the Structure Equation Model (SEM). The SEM method can model a causal relationship with a complex problem and determine the percentage of influence. The analysis found that the intention to adopt an induction stove was significantly influenced by subjective norm (SN), perceived behaviour control (PBC), and attitude toward behaviour (ATT). PBC is affected considerably by Speed, Maintenance, Cost, and Product Safety. ATT is significantly affected by Speed, Cost, Maintenance, and Security. Alternative penetration policy can be carried out on product heating speed, cost, and product maintenance, which are the variables that most significantly influence the adoption of induction stoves.


Factor Analysis; Induction Stoves; Structure Equation Model (SEM)

Full Text:



Abdul, A., Riano, A., & Marsisno, W. (2022). Analisis Minat Generasi Z Untuk Mengisi Survei Online Aplikasi Teori Perilaku Terencana ( Theory of Planned Behavior ). 2017, 235–244.

Briguglio, M., & Formosa, G. (2017). When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights. Energy Policy, 108(February), 154–162. https://doi.org/10.1016/j.enpol.2017.05.039

F, F., Samputri, A. V, Fanguna, A. M., Prasetyaningrum, F. D., & H, N. (2022). kompor Listrik tenaga Surya Sebagai Penunjang Kebutuhan Rumah Tangga. Journal of Physics and Science Learning, 06(02), 118–122.

Hanantyo, B., Setiawan, B., & Akbar, I. A. (2022). The Factors Affected m-Services Adoption in Airports. Journal of Informatics and Telecommunication Engineering, 6(1), 309–324. https://doi.org/10.31289/jite.v6i1.7559

Hasanah, A. W., & Handayani, O. (2016). Perbandingan Efisiensi Energi Dan Biaya Pada Kompor Induksi Terhadap Kompor Listrik Dan Kompor Gas. In Jurnal Ilmiah Sutet (Vol. 6, Issue 2, pp. 22–29). https://stt-pln.e-journal.id/sutet/article/view/565

Lee, M., & Hong, T. (2019). Hybrid agent-based modeling of rooftop solar photovoltaic adoption by integrating the geographic information system and data mining technique. Energy Conversion and Management, 183, 266–279. https://doi.org/10.1016/j.enconman.2018.12.096

Maya Sopha, B., Klöckner, C. A., & Hertwich, E. G. (2011). Exploring policy options for a transition to sustainable heating system diffusion using an agent-based simulation. Energy Policy, 39(5), 2722–2729. https://doi.org/10.1016/j.enpol.2011.02.041

Palmer, J., Sorda, G., & Madlener, R. (2015). Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation. Technological Forecasting and Social Change, 99, 106–131. https://doi.org/10.1016/j.techfore.2015.06.011

Robinson, S. A., & Rai, V. (2015). Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach. Applied Energy, 151, 273–284. https://doi.org/10.1016/j.apenergy.2015.04.071

Simamora, M. S., & Siregar, S. (2022). Analysis of Factors Affecting Electricity Sales at PLN ULP Medan Timur. Jurnal Akuntansi, Manajemen Dan …, 1(2), 165–176. https://jurnal.unived.ac.id/index.php/jambd/article/view/2395%0Ahttps://jurnal.unived.ac.id/index.php/jambd/article/download/2395/1904

Sopha, B. M., & Klöckner, C. A. (2011). Psychological factors in the diffusion of sustainable technology: A study of Norwegian households’ adoption of wood pellet heating. Renewable and Sustainable Energy Reviews, 15(6), 2756–2765. https://doi.org/10.1016/j.rser.2011.03.027

Sopha, B. M., Klöckner, C. A., Skjevrak, G., & Hertwich, E. G. (2010). Norwegian households’ perception of wood pellet stove compared to air-to-air heat pump and electric heating. Energy Policy, 38(7), 3744–3754. https://doi.org/10.1016/j.enpol.2010.02.052

Xiao, Y., & Han, J. (2016). Forecasting new product diffusion with agent-based models. Technological Forecasting and Social Change, 105, 167–178. https://doi.org/10.1016/j.techfore.2016.01.019

Yudiartono, Y., Windarta, J., & Adiarso, A. (2022). Analisis Prakiraan Kebutuhan Energi Nasional Jangka Panjang Untuk Mendukung Program Peta Jalan Transisi Energi Menuju Karbon Netral. Jurnal Energi Baru Dan Terbarukan, 3(3), 201–217. https://doi.org/10.14710/jebt.2022.14264

Zhang, H., Vorobeychik, Y., Letchford, J., & Lakkaraju, K. (2014). Predicting rooftop solar adoption using agent-based modeling. In AAAI Fall Symposium - Technical Report: Vol. FS (pp. 44–51). https://api.elsevier.com/content/abstract/scopus_id/84940368352

Zhang, H., Vorobeychik, Y., Letchford, J., & Lakkaraju, K. (2016). Data-driven agent-based modeling, with application to rooftop solar adoption. Autonomous Agents and Multi-Agent Systems, 30(6), 1023–1049. https://doi.org/10.1007/s10458-016-9326-8

Zhao, J., Mazhari, E., Celik, N., & Son, Y. J. (2011). Hybrid agent-based simulation for policy evaluation of solar power generation systems. Simulation Modelling Practice and Theory, 19(10), 2189–2205. https://doi.org/10.1016/j.simpat.2011.07.005

Article Metrics

Abstract view(s): 214 time(s)
PDF: 147 time(s)


  • There are currently no refbacks.