Study of 3D Printing Layered Fiber Fabric Filaments as an Alternative to Polypropylene Materials in Ankle Foot Orthosis for Children with Cerebral Palsy

Muhammad Fiqran Alauddin(1*), Susy Susmartini(2), Lobes Herdiman(3),

(1) Sebelas Maret University
(2) Sebelas Maret University
(3) Sebelas Maret University
(*) Corresponding Author
DOI: https://doi.org/10.23917/jiti.v22i1.21433

Abstract

Children with CP in the moderate category need to use AFO to be able to walk. AFO products with PP materials used by CP children have drawbacks because the design needs of CP children are different. The application of additive manufacture by adding a layer of fiber fabric expected to replace PP materials. The basic materials for making AFO are PLA, ABS, PETG and PC filaments with carbon and texalium fabric types. Tests are carried out through tensile and impact tests to obtain tension and impact values. The treatment factors used in the process of making specimen are lamination, type of filament, and thickness. This study uses a factorial design model, to determine the significance value of each factor using ANOVA. The results show a polycarbonate filament layered with carbon fabric with a tension of 301.064 MPa, and an impact of 40.68 J/m.

Keywords

Cerebral Palsy; Ankle-foot orthosis;Additive Manufacture;ANOVA

Full Text:

PDF

References

Aydin, L., & Kucuk, S. (2018). A method for more accurate FEA results on a medical device developed by 3D technologies. Polymers for Advanced Technologies, 29 (8), 2281–2286. https://doi.org/10.1002/pat.4339

Banga, H. K., Belokar, R. M., Kalra, P., & Kumar, R. (2018). Fabrication and stress analysis of ankle foot orthosis with additive manufacturing. Rapid Prototyping Journal, 24 (2), 301–312. https://doi.org/10.1108/RPJ-08-2016-0125

Banga, H. K., Kalra, P., Belokar, R. M., & Kumar, R. (2020). Customized design and additive manufacturing of kids’ ankle foot orthosis. Rapid Prototyping Journal, 26 (10), 1677–1685. https://doi.org/10.1108/RPJ-07-2019-0194

Bhatt, P., & Goe, A. (2017). Carbon Fibres: Production, Properties and Potential Use. Material Science Research India, 14 (1), 52–57. https://doi.org/10.13005/msri/140109

Bregman, D. J. J., de Groot, V., van Diggele, P., Meulman, H., Houdijk, H., & Harlaar, J. (2010). Polypropylene ankle foot orthoses to overcome drop-foot gait in central neurological patients: A mechanical and functional evaluation. Prosthetics and Orthotics International, 34 (3), 293–304. https://doi.org/10.3109/03093646.2010.495969

Choi, H., Peters, K. M., MacConnell, M. B., Ly, K. K., Eckert, E. S., & Steele, K. M. (2017). Impact of ankle foot orthosis stiffness on Achilles tendon and gastrocnemius function during unimpaired gait. Journal of Biomechanics, 64, 145–152. https://doi.org/10.1016/j.jbiomech.2017.09.015

D638-14., A. (2016). Standard Practice for Preparation of Metallographic Specimens. ASTM International, 82 (C), 1–15., 1-15.

Do, K. H., Song, J. C., Kim, J. H., Jung, G. S., Seo, S. W., Kim, Y. K., Son, S. M., & Jang, S. H. (2014). Effect of a hybrid ankle foot orthosis made of polypropylene and fabric in chronic hemiparetic stroke patients. American Journal of Physical Medicine and Rehabilitation, 93 (2), 130–137. https://doi.org/10.1097/PHM.0b013e3182a92f85

Gordeev, E. G., Degtyareva, E. S., Ananikov, V. P., & Zelinsky, N. D. (2016). Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. In Izvestiya Akademii Nauk. Seriya Khimicheskaya, 65 (6). http://www.link.springer.com

Handoyo, Y. (2013). Perancangan alat uji impak metode charpy kapasitas 100 joule. Jurnal Ilmiah Teknik Mesin, 1 (2), 45-53.

Krukonis, K., Daunoravičiene, K., Griškevičius, J., & Kilikevičius, A. (2017a). Method for ankle foot orthotics’ mechanical assessment: A pilot study.

Mechanika, 23 (5), 723–727.

https://doi.org/10.5755/j01.mech.23.5.15765

Mavroidis, C., Ranky, R. G., Sivak, M. L., Patritti, B. L., DiPisa, J., Caddle, A., Gilhooly, K., Govoni, L., Sivak, S., Lancia, M., Drillio, R., & Bonato, P. (2011). Patient specific ankle-foot orthoses using rapid prototyping. Journal of NeuroEngineering and Rehabilitation, 8 (1). https://doi.org/10.1186/1743-0003-8-1

Sacaze, E., Garlantezec, R., Rémy-Néris, O., Peudenier, S., Rauscent, H., le Tallec, H., ... & Brochard, S. (2013). A survey of medical and paramedical involvement in children with cerebral palsy in Britanny: preliminary results. Annals of Physical and Rehabilitation Medicine, 56 (4), 253-267.

Shahar, F. S., Hameed Sultan, M. T., Lee, S. H., Jawaid, M., Md Shah, A. U., Safri, S. N. A., & Sivasankaran, P. N. (2019). A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis. Journal of The Mechanical Behavior of Biomedical Materials, 99, 169–185. Elsevier Ltd. https://doi.org/10.1016/j.jmbbm.2019.07.020

Hayek, S., Hemo, Y., Chamis, S., Bat, R., Segev, E., Wientroub, S., Yzhar, Z. 2007. The effect of community-prescribed ankle–foot orthoses on gait parameters in children with spastic cerebral palsy. Journal of Children’s Orthopaedics, 1 (6), 325 - 332.

Takhakh, A. M., Jweeg, M. J., & Abbas, S. M. 2017. Characterization of materials used in manufacturing the ankle foot ortheses. International Journal Of Energy and Environment, 8.

Wojciechowski, E., Chang, A. Y., Balassone, D., Ford, J., Cheng, T. L., Little, D., Menezes, M. P., Hogan, S., & Burns, J. (2019). Feasibility of designing, manufacturing and delivering 3D printed ankle-foot orthoses: A systematic review. Journal of Foot and Ankle Research, 12 (1). BioMed Central Ltd. https://doi.org/10.1186/s13047-019-0321-6

Article Metrics

Abstract view(s): 178 time(s)
PDF: 172 time(s)

Refbacks

  • There are currently no refbacks.