
KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

39

Vol. 7 No. 1 | April 2021

Complex University Timetabling Using Iterative
Forward Search Algorithm and Great Deluge Algorithm

I Gusti Agung Premananda*, Ahmad Muklason
Information Systems Department

Faculty of Intelligent Electrical and Informatics Technology
Institut Teknologi Sepuluh Nopember Surabaya

 Surabaya, Indonesia
*igustiagungpremananda@gmail.com

Abstract-University timetabling is an issue that has received more attention in the field of operations research. Course
scheduling is the process of arranging time slots and room for a class by paying attention to existing limitations. This
problem is an NP-Hard problem, which means the computation time to find a solution increases exponentially with
the size of the problem. Solutions to problems of this kind generally use a heuristic approach, which tries to find a
sufficiently good (not necessarily optimal) solution in a reasonable time. We go through two stages in solving the
timetabling problem. The first stage is to schedule all classes without breaking any predefined rules. The second stage
optimizes the timetable generated in the first stage. This study attempts to solve the class timetabling problem issued
in a competition called the 2019 International Timetabling Competition (ITC 2019). In the first stage, we use the
Iterative Forward Search (IFS) algorithm to eliminate timetable candidates and to generate a schedule. In the second
stage, we employ the Great Deluge algorithm with a hyper-heuristic approach to optimize the solution produced in the
first stage. We have tested the method using 30 datasets by taking 1,000,000 iterations on each dataset. The result is an
application that does schedule elimination and uses the IFS algorithm to produce a schedule that does not violate any
of the hard constraints on 30 ITC 2019 datasets. The implementation of the Great Deluge algorithm optimizes existing
schedules with an average penalty reduction of 42%.

Keywords: timetabling, class scheduling, iterated forward search, international timetabling competition

Article info: submitted December 10, 2020, revised March 4, 2021, accepted March 24, 2021

1.	 Introduction

Timetabling problems in education have received
much attention and have long been studied in the field
of operations research [1]. This problem contains how
to schedule courses against the available schedule and
room. There are two types of constraints pertaining to the
challenge, namely hard constraints and soft constraints
[2]. Hard constraint is a limit that must be met in
scheduling a class [3]. Examples of this limitation include
the maximum capacity of a classroom, the number of
schedule slots available in a class and two classes that
cannot be scheduled simultaneously. Soft constraint is
a limit that can be violated, but if it is violated, it will
cause the quality of scheduling to decrease [3]. Generally,
the penalty value is used on the soft constraints that are
violated to measure the quality of the resulting scheduling.
Examples of soft constraints such as preferably class a

and class b should be scheduled simultaneously, class a
should not be scheduled in room x, and class a should be
scheduled in a different week from class c.

 Scheduling problems involve many rooms and
many possible time slots. Hence the number of possible
combinations will be very high. This problem has been
categorized as an NP-Hard problem [4] which means the
computation time required to find a solution increases
exponentially with the size of the problem [5]. If there are
3 classes to be scheduled, the number of possible schedule
combinations is 6. However, if there are 10 classes to be
scheduled, the number of possible schedule combinations
increases exponentially to 3,628,800 possibilities. Facing
this fact, latest researches focus more on developing
algorithms with a heuristic approach, namely an approach
to produce a fairly good solution (not necessarily the
optimal one) and within a reasonable time (time that
allows it to be applied to real problems) [6].

http://journals.ums.ac.id/index.php/khif

Complex University Timetabling...40

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Generally solving scheduling problems consists
of two phases, namely the first phase to build an initial
solution without breaking existing hard constraints and
the next phase is to optimize the solution by reducing
the number of penalties for violating soft constraints [7].
In the first phase, Graph Coloring algorithm is generally
applied, which is a simple algorithm to convert classes into
graphical form and use coloring to ensure that there are no
violations of hard constraints [8]. However, in several case
studies, sometimes there are too many hard constraints
that the Graph Coloring algorithm could not produce an
initial solution. This calls for another algorithm to tackle
the challenge [7].

Several studies have been conducted to solve
timetabling problems. Research conducted by Muller et
al in 2004 [9] created a new algorithm that can be used
in university timetabling problems in which there are
many constraints and hierarchies of courses so that this
problem is known as complex university timetabling [10].
This algorithm is called Iterative Forward Search (IFS).
The trial was carried out on scheduling problems at Purdue
University and was able to meet up to 98% of student
requests where there were no conflicting schedules between
the courses selected by the student. Subsequent research
was carried out by Rudová in 2010 [10] where they
successfully applied the IFS algorithm to solve scheduling
problems in the 2007 ITC dataset. Meanwhile, on the
same dataset, Muklason conducted research in 2019 [11]
to perform optimization using the Great Deluge algorithm
based on hyper heuristics scheme. The result concluded
that this algorithm is superior to other algorithms such as
simulated annealing and hill climbing algorithms [11].

Table 1. Description of the ITC 2019 Dataset

Dataset
Number

of
Classes

Number
of

Rooms

Number
of

students

Number
of Limits

agh-fis-spr17 1239 80 1641 1220

agh-ggis-spr17 1859 44 2116 2690

bet-fal17 983 62 3018 1251

iku-fal17 2641 214 0 2902

mary-spr17 882 90 3666 3947

muni-fi-spr16 575 35 1543 740

muni-fsps-
spr17

561 44 865 400

muni-pdf-
spr16c

2526 70 2938 2026

pu-llr-spr17 1001 75 27018 634

tg-fal17 711 15 0 501

agh-ggos-
spr17

1144 84 2254 1688

agh-h-spr17 460 39 1988 399

lums-spr18 487 73 0 518

muni-fi-spr17 516 35 1469 699

Dataset
Number

of
Classes

Number
of

Rooms

Number
of

students

Number
of Limits

muni-fsps-
spr17c

650 29 395 709

muni-pdf-
spr16

1515 83 3443 1012

nbi-spr18 782 67 2293 596

pu-d5-spr17 1061 84 13497 1535

pu-proj-fal19 8813 768 38437 7797

yach-fal17 417 28 821 645

agh-fal17 5081 327 6925 7154

bet-spr18 1083 63 2921 1418

iku-spr18 2782 208 0 3488

lums-fal17 502 73 0 597

mary-fal18 951 93 5051 513

muni-fi-fal17 535 36 1685 787

muni-fspsx-
fal17

1623 33 1152 1359

muni-pdfx-
fal17

3717 86 5651 3501

pu-d9-fal19 2798 224 35213 2746

tg-spr18 676 18 0 426

The 2019 ITC [12] issued 30 new datasets (Table
1) containing timetabling problems based on original
data from several universities in the world. This problem
contains how to schedule classes without violating existing
restrictions and also produce good quality timetable by
obtaining the smallest possible penalty. The penalty value
at ITC 2019 comes from four types of soft constraints. The
first is that each schedule candidate has a different penalty
value. So that as much as possible in scheduling a class, it is
done on the schedule candidate having the lowest penalty.
Furthermore, each room also has a different penalty value
so that as much as possible we choose the room with the
lowest penalty when scheduling a class. Furthermore, a
penalty is applied if a student gets two or more overlapped
classes – hence impossible to attend them all. Penalties will
be given according to the number of overlapping classes
for each student. Finally, penalties are awarded based on
violations of 19 types of distribution (Table 2) which are
soft constraints.

Table 2. Description of Distribution Boundaries

Distribution
Limits Description

SameStart The classes covered by this limit must start in
the same time slot

SameTime Classes that fall under this limit must have the
same start and end times if the class duration
is the same. If the class duration is different,
the shorter class must start at the same time
or after the class whose duration is longer and
must end before or together with the longer
duration class.

http://journals.ums.ac.id/index.php/khif

Complex University Timetabling... 41

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Distribution
Limits Description

DifferentTime The opposite of the sameTime limitation.

SameDays Classes that are subject to this limit must be
scheduled on the same day. If a class has fewer
days in the week, that class should be scheduled
as a subset of the class with the larger number
of days.

DifferentDays The opposite of the SameDays limitation

SameWeeks These limits are the same as the SameDays
limits, but apply on a week basis

DifferentWeeks The opposite of the SameWeeks constraint

Overlap Classes that fall under this limitation must be
scheduled overlapping in terms of time slots,
days and weeks.

NotOverlap The opposite of the Overlap limit

SameRoom Classes that fall under this limit must be
scheduled in the same room

DifferentRoom The opposite of SameRoom limitation

SameAttendees The class that is in this limit must allow one
student to take it at the same time. Classes
must not be scheduled overlap and must pay
attention to the distance to go from one class
to another.

Precedence Classes contained in this constraint must
be scheduled according to the order in this
constraint. The ordering is only based on the
first time meeting in each class.

WorkDay Classes that are subject to this limit may not
be scheduled for the end of the final class plus
the initial class start over the S time slot if it is
scheduled on the same day and week.

MinGap Classes that fall under this limit must have a
certain distance (x) of time if scheduled on the
same day.

MaxDays Classes that are subject to this limit cannot be
scheduled more than (x) days apart.

MaxDayLoad Classes subject to this limit must be scheduled
for no more than (x) time slots on each day.

MaxBreaks Classes that fall under this limit must be
scheduled with no break between classes more
than (x) time slots on each day.

MaxBlock This limitation imposes a limit on the block
length (some classes are scheduled with the rest
interval between classes is less than (y) time
slots) so that there are no more than (x) time
slots on each day.

This dataset has a higher level of complexity
compared to the dataset issued by the same competition
in 2011, 2007 and 2002. The increased complexity lies in
the limited list of schedules in each class, increased types
of hard constraints and soft constraints to 19 types, and
the presence of hierarchies in each subject. The ITC 2019

dataset is divided into 3 types, namely 10 early instance
datasets, 10 middle instance datasets and 10 late instance
datasets. The three groups of the dataset have different
levels of difficulty based on the number of classes, the
number of rooms, the number of students and the number
of distributions. The early dataset is the easiest dataset with
the smallest average number of classes, number of rooms,
number of students, and distribution. Furthermore, the
middle dataset has a moderate level of difficulty with the
average number of classes, the number of rooms, the
number of students and distribution more than the early
group dataset but less than the late group dataset. The late
dataset group is the most difficult dataset with an average
number of classes, the number of rooms, the number of
students and the most distribution compared to the early
and middle group dataset.

Based on the above background, this study aims to
solve the latest complex scheduling problems using the
latest dataset from ITC 2019. From this research it is hoped
that it can be used by various universities that have similar
problems in producing course schedules in their respective
departments or universities.

2.	 Methods

This section explains the stages carried out in this
study, starting from data preprocessing to validating the
final solution.

a.	 Data Preprocessing
At this stage there will be elimination of several

schedule candidates in each class that are impossible to use.
This happens because the candidate’s schedule and room
have clearly violated the hard constraints. Otherwise, if
those candidates were retained, it will interfere with the
initial solution search process and the solution optimization.

The first elimination is carried out based on room
usage restrictions, where there are rooms that cannot be
used at a certain time. Each candidate schedule will be
checked as shown in Figure 1. If there is a conflict, the
candidate schedule will be deleted.

The next elimination is carried out on schedule
candidates who violate the distribution constraints (Table
2) in the form of hard constraints that present in each class.
For example if there is a distribution limitation where class
(x) must be scheduled on the same day (SameDay) as class
(y), then the candidate schedule in class (x) which has the
same day as the class schedule candidate (y) will be retained
and the rest going to elimination. All schedule candidates
in each class will be checked against the distribution
boundaries in the form of hard constraints as shown in
Figure 2. If it is found that there is a violation of any hard
constraint distribution, the candidate schedule will be
discarded.

http://journals.ums.ac.id/index.php/khif

Complex University Timetabling...42

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Figure 1. First Elimination Flow

Figure 2. Second Elimination Flow

The next elimination is carried out based on the class
which has one schedule candidate. For example, suppose
class (x) has only one schedule candidate. Then class (x)
will be scheduled on that one candidate schedule because
there is no other choice. Apart from class (x), if there is a
class that has an overlap with the candidate schedule in
class (x), it will be eliminated because it is not possible to
use it. The flow of this elimination can be seen in Figure 3.
To see how effective this elimination is, the results will be
compared with elimination and without elimination.

b.	 Algorithm design and implementation
At this stage, a design will be carried out to make

several changes to the IFS algorithm so that it is able to
produce a viable solution. The IFS algorithm initially takes
a variable randomly and tries to enter a randomly drawn
value from that variable. If there is a conflict, the value

in the conflict variable will be temporarily deleted. The
pseudo code of the IFS algorithm can be seen in Figure 4.

Figure 3. Third Elimination Flow

Figure 4. IFS algorithm pseudocode

Changes made in this study involve changing the
selection of values, or in this case in the form of a schedule
candidate from being randomly selected to trying each
candidate schedule until it is found that there is no conflict
with other variables or in this case a class. If it is found
that there are no schedule candidates that can be used in
a scheduled class, one of the schedule candidates will be
selected randomly and the other classes that conflict with
the schedule candidate will be returned to the unscheduled

http://journals.ums.ac.id/index.php/khif

Complex University Timetabling... 43

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

condition. The iteration will be repeated until it is found
that all the class conditions have been scheduled and
no one has violated the constraints. Figure 5 shows the
changes made to the IFS algorithm.

To see if there is an impact of changes made to the IFS
algorithm, this study runs and compares two algorithms,
namely by using the IFS algorithm as shown in Figure
4 and the IFS algorithm which has been changed as in
Figure 5.

Figure 5. Pseudocode of IFS Algorithm Change Results

After obtaining the initial solution, optimization
will be carried out using the Great Deluge algorithm
with a hyper-heuristic approach. In the hyper-heuristic
approach, there are two parts, namely move acceptance to
choose whether or not a solution is accepted and low level
heuristic (LLH) to change existing solutions.

In the move acceptance section, the Great Deluge
algorithm is used. A new solution will be accepted if it
produces a better result than the previous solution or if the
solution is better than the level parameter value. The level
parameter value is obtained from the initial solution value
and will decrease continuously during the iteration. Figure
4 illustrates how this algorithm works.

In the LLH section, mutations are used to make
changes to the solution. Mutations work by changing
the schedule of one of the classes. Figure 7 illustrates the
changes made by mutations. Initially there was a class 6
class that had been scheduled. Class 1 is scheduled for
time slot 10, class 2 is scheduled for time slot 76, class
3 is scheduled for time slot 23 and so on. Mutations are
applied to class 3 by scheduling at a different time slot,
namely 27 time slots. The mutation only affects one
randomly selected class. Meanwhile, other classes will not
change.
	 Furthermore, the algorithm design will be
implemented through the Java programming language
with a trial environment as shown in Table 3.

Table 3. Algorithm Implementation Environment

Device Specification
Processor AMD Ryzen 7 3700U (8

CPUs)
Ram 16GB
OS Windows

Intellij IDE 8.0.2

c.	 Final Solution Validation
To ensure that the final result is a valid solution, the

final result will be uploaded to https://www.itc2019.org/
validator to check the solution. The validator will check
whether any hard constraints are violated or not. In
addition, the validator will calculate the penalty value so
that the penalty value on the validator web can be compared
with the penalty value that is owned in this test to ensure
that the program of implementing the algorithm that has
been designed produces the correct results. Solutions that
have been deemed valid by the web validator will be stored
on the website.

Figure 6. Great Deluge Algorithm pseudocode

Figure 7. Examples of Mutation Operations in Scheduling

3.	 Results and Discussion

This section will explain the results obtained in this
study.

a.	 Data Preprocessing
After the data preprocessing process was carried out,

a reduction in schedule candidates was obtained in each
dataset. Tables 3, 4 and 5 display the number of schedule
candidates, the number of eliminated schedule candidates

http://journals.ums.ac.id/index.php/khif

Complex University Timetabling...44

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

and the percentage of eliminations performed. Overall
there is a reduction in schedule candidates by an average of
19.4% of the 30 datasets tested.

To see the impact of the data preprocessing process, a
comparison was made between using the data preprocessing
process and those that did not use the data preprocessing
process. The result is that without the data preprocessing
process, there are 8 datasets for which a solution cannot
be found without violating existing hard constraints. The
8 datasets are Agh-fis-spr17, Nbi-spr18, Pu-d5-spr17, Pu-
proj-fal19, Agh-fal17, Muni-fspsx-fal17, Muni-pdf-fal17
and Pu-d9-fal19.

The data preprocessing process has proven to be able
to help find initial solutions without breaking existing hard
constraints. This happens because if the schedule candidate
is not eliminated in the data preprocessing process, the
schedule candidate will interfere with the process of
producing the initial solution. Schedule candidates who
are unlikely to be used, can be selected in the process of
generating the initial solution. This will have an impact on
other classes and cause conflicts between classes.

b.	 Initial Solution and Final Solution
The initial solution was carried out after the data

preprocessing stage by running the IFS algorithm which
was adjusted to the 2019 ITC problem. The result was
that this algorithm was able to produce an initial solution
without breaking the hard constraints that existed in the
entire dataset (30 datasets).

To see the impact of changes made to the IFS
algorithm, two experiments were carried out using the
original IFS algorithm and using the IFS algorithm that
had been changed. The result is that using the original
IFS algorithm without making any changes is only able
to produce an initial solution on one dataset, namely the
Mary-spr17 dataset. This happens because the original IFS
algorithm selects schedule candidates randomly, so that the
search for solutions is not well focused on finding solutions
without breaking the existing hard constraints.

The next step is to optimize each dataset by running
1000,000 iterations. The result was that the largest penalty
reduction was in the Lums-spr18 dataset, which was
78% and the smallest penalty reduction was in the bet-
fal17 dataset, which was 7%. Overall, the average penalty
reduction was 42%. Tables 6, 7 and 8 show the results of
the comparison between the initial solution and the final
solution after the penalty is applied.

In the Pu-proj-fal19, Bet-fal17, Agh-fal17, Bet-
spr18, Muni-fspsx-fal17 and Muni-pdfx-fal17 dataset,
optimization can only reduce penalties by a percentage
of between 7-11%, especially in the late dataset. This
happens because the late dataset is the most difficult
dataset by having more classes, rooms and boundaries
than the middle and early dataset groups. The Great
Deluge algorithm cannot explore solutions on a dataset

like this because when a solution changes, hard constraint
violations often occur so that the new solution cannot be
accepted.

Table 4. Preprocessing results on 10 datasets of early
instances

Dataset
Number of
Candidates
Schedule

Number of
Reduced
Schedule

Candidates

Percentage
Reduction

Agh-fis-spr17 4373766 2715519 62%

Agh-ggis-spr17 353772 90790 26%

Bet-fal17 621508 101715 16%

Iku-fal17 3653791 102996 3%

Mary-spr17 169069 2177 1%

Muni-fi-spr16 48183 7371 15%

Muni-fsps-spr17 33810 2580 8%

Muni-pdf-spr16c 915725 43754 5%

Pu-llr-spr17 178424 47201 26%

Tg-fal17 77498 8116 10%

Table 5. Preprocessing results on 10 middle instance
datasets

Dataset
Number of
Candidates
Schedule

Number of
Reduced
Schedule

Candidates

Percentage
Reduction

Agh-ggos-spr17 2331431 1155289 50%

Agh-h-spr17 2693914 1539477 57%

Lums-spr18 591475 199391 34%

Muni-fi-spr17 57843 8508 15%

Muni-fsps-spr17c 439903 84340 19%

Muni-pdf-spr16 915752 43754 5%

Nbi-spr18 144682 3000 2%

Pu-d5-spr17 86802 9991 12%

Pu-proj-fal19 1937292 259255 13%

Yach-fal17 93648 3857 4%

Preprocessing results on 10 late instance datasets

Dataset
Number of
Candidates
Schedule

Number of
Reduced
Schedule

Candidates

Percentage
Reduction

Agh-fal17 6012899 2574797 62%

Bet-spr18 649353 98402 15%

Iku-spr18 3588585 122101 16%

Lums-fal17 606929 220968 36%

Mary-fal18 187962 5295 3%

Muni-fi-fal17 46341 6374 14%

Muni-fspsx-fal17 579535 156832 8%

Muni-pdfx-fal17 5054749 1223449 24%

Pu-d9-fal19 677889 79274 12%

Tg-spr18 85330 11529 10%

http://journals.ums.ac.id/index.php/khif

Complex University Timetabling... 45

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

c.	 Validate the final solution results
The final stage to ensure the results of the research are

valid, validation of the final solution is carried out on the
ITC 2019 website. The results are as in Figure 8, the 30
solutions produced have proven to be solutions that do not
violate existing hard constraints by storing these solutions
on the validator web. The penalty results for each solution
are also stored on the website.

Table 6. Initial Solution and Final Solution on 10 dataset
early instances

Dataset
Early

Solution
Penalty

Final Solution
Penalty

Percentage
Reduction

Agh-fis-spr17 38233 10858 72%

Agh-ggis-spr17 199432 107558 46%

Bet-fal17 414061 385290 7%

Iku-fal17 162211 112187 31%

Mary-spr17 77804 29161 63%

Muni-fi-spr16 24471 11222 54%

Muni-fsps-spr17 277511 150459 46%

Muni-pdf-spr16c 600126 517913 14%

Pu-llr-spr17 140771 55275 61%

Tg-fal17 26072 14548 44%

Initial Solution and Final Solution on 10 middle instance
dataset

Dataset
Early

Solution
Penalty

Final
Solution
Penalty

Percentage
Reduction

Agh-ggos-spr17 77059 22730 71%

Agh-h-spr17 55312 32717 41%

Lums-spr18 1638 361 78%

Muni-fi-spr17 23116 10158 56%

Muni-fsps-spr17c 657434 488529 26%

Muni-pdf-spr16 337279 212005 37%

Nbi-spr18 128733 58516 55%

Pu-d5-spr17 58746 30762 48%

Pu-proj-fal19 931627 831950 11%

Yach-fal17 29297 8382 71%

Initial Solution and Final Solution on 10 late instance
datasets

Dataset Early Solution
Penalty

Final Solution
Penalty

Percentage
Reduction

Agh-fal17 552095 493834 11%

Bet-spr18 482804 443992 8%

Iku-spr18 198190 149340 25%

Lums-fal17 2695 1467 46%

Mary-fal18 59431 23326 61%

Muni-fi-fal17 30133 12044 60%

Muni-fspsx-fal17 1132578 1002804 11%

Muni-pdfx-fal17 952705 871244 9%

Pu-d9-fal19 627582 480907 23%

Tg-spr18 104276 36242 65%

Figure 8. Validation Results

4.	 Conclusion

This research focuses on solving complex scheduling
problems using the latest dataset from ITC 2019. The
solution to this problem is carried out in two phases. The
first phase is building an initial solution without breaking
existing hard constraints. The second phase is optimizing
the solution to make it better by reducing the number of
penalties for violations of soft constraints.

The first phase is done by implementing the
elimination of schedule candidates when preprocessing
data and applying the IFS algorithm with some changes.
As a result, all ITC 2019 datasets (30 datasets) were found
to be viable initial solutions without breaking the hard
constraints.

The second phase is optimization by applying the
Great Deluge algorithm with a hyper heuristic approach
using mutation LLH. The results obtained an average
penalty reduction of 42%.

Reference

1.	 	 Lindahl, M., Mason, A. J., Stidsen, T. and Sørensen,
“A strategic view of University timetabling,”
European Journal of Operational Research, vol. 226,
no. 1, pp. 35-45, 2018.

2.	 	 V. I. Skoullis, . I. X. Tassopoulos and G. N.
Beligiannis, “Solving the high school timetabling
problem using a hybrid cat swarm optimization
based algorithm,” Applied Soft Computing, vol. 52,
pp. 277-289, 2017.

3.	 	 M. Chen, X. Tang, T. Song, C. Wu, S. Liu and
X. Peng, “A Tabu search algorithm with controlled
randomization for constructing feasible university
course timetables,” Computers and Operations
Research, pp. 1-20, 2020.

4.	 	 J. S. Tan, S. L. Goh, G. Kendall and N. R. Sabar,
“A survey of the state-of-the-art of optimisation

http://journals.ums.ac.id/index.php/khif

Complex University Timetabling...46

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

methodologies in school timetabling problems,”
Expert Systems With Applications, vol. 165, 2021.

5.	 	 T. Thepphakorn and P. Pongcharoen ,
“Performance improvement strategies on Cuckoo
Search algorithms for solving the university
course timetabling problem,” Expert Systems with
Applications, no. 161, 2020.

6.	 	 L. Saviniec and A. A. Constantino, “Effective local
search algorithms for high school timetabling
problems,” Applied Soft Computing, vol. 60, pp.
363-373, 2017.

7.	 	 A. Rezaeipanah, S. S. Matoori and G. Ahmadi
, “A hybrid algorithm for the university course
timetabling problem using the improved parallel
genetic algorithm and local search,” Applied
Intelligence, no. 51, p. 467–492, 2021.

8.	 	 T. Song, S. Liu, X. Tang, X. Peng and M. Chen,
“ An iterated local search algorithm for the
University Course Timetabling Problem,” Applied
Soft Computing, vol. 68, pp. 597-608, 2018.

9.	 	 T. M¨uller, R. Bart´ak and H. Rudov´a, “Iterative
Forward Search Algorithm: Combining Local
Search with Maintaining Arc Consistency and a
Conflict-Based Statistics,” Principles and Practice of
Constraint Programming - CP, vol. 3258, 2004.

10.	 	 Rudová, H., Müller, T. and Murray, K., “Complex
university course timetabling,” Journal of
Scheduling, vol. 14, no. 2, p. 187–207, 2010.

11.	 	 A. Muklason, G. B. Syahrani and A. Marom,
“Great Deluge Based Hyper-heuristics for Solving
Real-world University Examination Timetabling
Problem: New Data set and Approach,” The Fifth
Information Systems International Conference 2019,
pp. 647-655, 2019.

12.	 	 T. M¨uller , ·. H. Rudov´a and Z. M¨ullerov´a,
“University course timetabling and International
Timetabling Competition 2019,” Proceedings of the
12th International Conference on the Practice and
Theory of Automated Timetabling (PATAT-2018),
pp. 5-31, 2018.

http://journals.ums.ac.id/index.php/khif

