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Abstract-University timetabling is an issue that has received more attention in the field of operations research. Course 
scheduling is the process of arranging time slots and room for a class by paying attention to existing limitations. This 
problem is an NP-Hard problem, which means the computation time to find a solution increases exponentially with 
the size of the problem. Solutions to problems of this kind generally use a heuristic approach, which tries to find a 
sufficiently good (not necessarily optimal) solution in a reasonable time. We go through two stages in solving the 
timetabling problem. The first stage is to schedule all classes without breaking any predefined rules. The second stage 
optimizes the timetable generated in the first stage. This study attempts to solve the class timetabling problem issued 
in a competition called the 2019 International Timetabling Competition (ITC 2019). In the first stage, we use the 
Iterative Forward Search (IFS) algorithm to eliminate timetable candidates and to generate a schedule. In the second 
stage, we employ the Great Deluge algorithm with a hyper-heuristic approach to optimize the solution produced in the 
first stage. We have tested the method using 30 datasets by taking 1,000,000 iterations on each dataset. The result is an 
application that does schedule elimination and uses the IFS algorithm to produce a schedule that does not violate any 
of the hard constraints on 30 ITC 2019 datasets. The implementation of the Great Deluge algorithm optimizes existing 
schedules with an average penalty reduction of 42%.
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1.	 Introduction 

Timetabling problems in education have received 
much attention and have long been studied in the field 
of operations research [1]. This problem contains how 
to schedule courses against the available schedule and 
room. There are two types of constraints pertaining to the 
challenge, namely hard constraints and soft constraints 
[2]. Hard constraint is a limit that must be met in 
scheduling a class [3]. Examples of this limitation include 
the maximum capacity of a classroom, the number of 
schedule slots available in a class and two classes that 
cannot be scheduled simultaneously. Soft constraint is 
a limit that can be violated, but if it is violated, it will 
cause the quality of scheduling to decrease [3]. Generally, 
the penalty value is used on the soft constraints that are 
violated to measure the quality of the resulting scheduling. 
Examples of soft constraints such as preferably class a 

and class b should be scheduled simultaneously, class a 
should not be scheduled in room x, and class a should be 
scheduled in a different week from class c.

  Scheduling problems involve many rooms and 
many possible time slots. Hence the number of possible 
combinations will be very high. This problem has been 
categorized as an NP-Hard problem [4] which means the 
computation time required to find a solution increases 
exponentially with the size of the problem [5]. If there are 
3 classes to be scheduled, the number of possible schedule 
combinations is 6. However, if there are 10 classes to be 
scheduled, the number of possible schedule combinations 
increases exponentially to 3,628,800 possibilities. Facing 
this fact, latest researches focus more on developing 
algorithms with a heuristic approach, namely an approach 
to produce a fairly good solution (not necessarily the 
optimal one) and within a reasonable time (time that 
allows it to be applied to real problems) [6]. 
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Generally solving scheduling problems consists 
of two phases, namely the first phase to build an initial 
solution without breaking existing hard constraints and 
the next phase is to optimize the solution by reducing 
the number of penalties for violating soft constraints [7]. 
In the first phase, Graph Coloring algorithm is generally 
applied, which is a simple algorithm to convert classes into 
graphical form and use coloring to ensure that there are no 
violations of hard constraints [8]. However, in several case 
studies, sometimes there are too many hard constraints 
that the Graph Coloring algorithm could not produce an 
initial solution. This calls for another algorithm to tackle 
the challenge [7].

Several studies have been conducted to solve 
timetabling problems. Research conducted by Muller et 
al in 2004 [9] created a new algorithm that can be used 
in university timetabling problems in which there are 
many constraints and hierarchies of courses so that this 
problem is known as complex university timetabling [10]. 
This algorithm is called Iterative Forward Search (IFS). 
The trial was carried out on scheduling problems at Purdue 
University and was able to meet up to 98% of student 
requests where there were no conflicting schedules between 
the courses selected by the student. Subsequent research 
was carried out by Rudová in 2010 [10] where they 
successfully applied the IFS algorithm to solve scheduling 
problems in the 2007 ITC dataset. Meanwhile, on the 
same dataset, Muklason conducted research in 2019 [11] 
to perform optimization using the Great Deluge algorithm 
based on hyper heuristics scheme. The result concluded 
that this algorithm is superior to other algorithms such as 
simulated annealing and hill climbing algorithms [11].

Table 1. Description of the ITC 2019 Dataset

Dataset
Number 

of 
Classes

Number 
of 

Rooms

Number 
of 

students

Number 
of Limits

agh-fis-spr17 1239 80 1641 1220

agh-ggis-spr17 1859 44 2116 2690

bet-fal17 983 62 3018 1251

iku-fal17 2641 214 0 2902

mary-spr17 882 90 3666 3947

muni-fi-spr16 575 35 1543 740

muni-fsps-
spr17

561 44 865 400

muni-pdf-
spr16c

2526 70 2938 2026

pu-llr-spr17 1001 75 27018 634

tg-fal17 711 15 0 501

agh-ggos-
spr17

1144 84 2254 1688

agh-h-spr17 460 39 1988 399

lums-spr18 487 73 0 518

muni-fi-spr17 516 35 1469 699

Dataset
Number 

of 
Classes

Number 
of 

Rooms

Number 
of 

students

Number 
of Limits

muni-fsps-
spr17c

650 29 395 709

muni-pdf-
spr16

1515 83 3443 1012

nbi-spr18 782 67 2293 596

pu-d5-spr17 1061 84 13497 1535

pu-proj-fal19 8813 768 38437 7797

yach-fal17 417 28 821 645

agh-fal17 5081 327 6925 7154

bet-spr18 1083 63 2921 1418

iku-spr18 2782 208 0 3488

lums-fal17 502 73 0 597

mary-fal18 951 93 5051 513

muni-fi-fal17 535 36 1685 787

muni-fspsx-
fal17

1623 33 1152 1359

muni-pdfx-
fal17

3717 86 5651 3501

pu-d9-fal19 2798 224 35213 2746

tg-spr18 676 18 0 426

The 2019 ITC [12] issued 30 new datasets (Table 
1) containing timetabling problems based on original 
data from several universities in the world. This problem 
contains how to schedule classes without violating existing 
restrictions and also produce good quality timetable by 
obtaining the smallest possible penalty. The penalty value 
at ITC 2019 comes from four types of soft constraints. The 
first is that each schedule candidate has a different penalty 
value. So that as much as possible in scheduling a class, it is 
done on the schedule candidate having the lowest penalty. 
Furthermore, each room also has a different penalty value 
so that as much as possible we choose the room with the 
lowest penalty when scheduling a class. Furthermore, a 
penalty is applied if a student gets two or more overlapped 
classes – hence impossible to attend them all. Penalties will 
be given according to the number of overlapping classes 
for each student. Finally, penalties are awarded based on 
violations of 19 types of distribution (Table 2) which are 
soft constraints.

Table 2. Description of Distribution Boundaries

Distribution 
Limits Description

SameStart The classes covered by this limit must start in 
the same time slot

SameTime Classes that fall under this limit must have the 
same start and end times if the class duration 
is the same. If the class duration is different, 
the shorter class must start at the same time 
or after the class whose duration is longer and 
must end before or together with the longer 
duration class.
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Distribution 
Limits Description

DifferentTime The opposite of the sameTime limitation.

SameDays Classes that are subject to this limit must be 
scheduled on the same day. If a class has fewer 
days in the week, that class should be scheduled 
as a subset of the class with the larger number 
of days.

DifferentDays The opposite of the SameDays limitation

SameWeeks These limits are the same as the SameDays 
limits, but apply on a week basis

DifferentWeeks The opposite of the SameWeeks constraint

Overlap Classes that fall under this limitation must be 
scheduled overlapping in terms of time slots, 
days and weeks.

NotOverlap The opposite of the Overlap limit

SameRoom Classes that fall under this limit must be 
scheduled in the same room

DifferentRoom The opposite of SameRoom limitation

SameAttendees The class that is in this limit must allow one 
student to take it at the same time. Classes 
must not be scheduled overlap and must pay 
attention to the distance to go from one class 
to another.

Precedence Classes contained in this constraint must 
be scheduled according to the order in this 
constraint. The ordering is only based on the 
first time meeting in each class.

WorkDay Classes that are subject to this limit may not 
be scheduled for the end of the final class plus 
the initial class start over the S time slot if it is 
scheduled on the same day and week.

MinGap Classes that fall under this limit must have a 
certain distance (x) of time if scheduled on the 
same day.

MaxDays Classes that are subject to this limit cannot be 
scheduled more than (x) days apart.

MaxDayLoad Classes subject to this limit must be scheduled 
for no more than (x) time slots on each day.

MaxBreaks Classes that fall under this limit must be 
scheduled with no break between classes more 
than (x) time slots on each day.

MaxBlock This limitation imposes a limit on the block 
length (some classes are scheduled with the rest 
interval between classes is less than (y) time 
slots) so that there are no more than (x) time 
slots on each day.

This dataset has a higher level of complexity 
compared to the dataset issued by the same competition 
in 2011, 2007 and 2002. The increased complexity lies in 
the limited list of schedules in each class, increased types 
of hard constraints and soft constraints to 19 types, and 
the presence of hierarchies in each subject. The ITC 2019 

dataset is divided into 3 types, namely 10 early instance 
datasets, 10 middle instance datasets and 10 late instance 
datasets. The three groups of the dataset have different 
levels of difficulty based on the number of classes, the 
number of rooms, the number of students and the number 
of distributions. The early dataset is the easiest dataset with 
the smallest average number of classes, number of rooms, 
number of students, and distribution. Furthermore, the 
middle dataset has a moderate level of difficulty with the 
average number of classes, the number of rooms, the 
number of students and distribution more than the early 
group dataset but less than the late group dataset. The late 
dataset group is the most difficult dataset with an average 
number of classes, the number of rooms, the number of 
students and the most distribution compared to the early 
and middle group dataset.

Based on the above background, this study aims to 
solve the latest complex scheduling problems using the 
latest dataset from ITC 2019. From this research it is hoped 
that it can be used by various universities that have similar 
problems in producing course schedules in their respective 
departments or universities.

2.	 Methods

This section explains the stages carried out in this 
study, starting from data preprocessing to validating the 
final solution.

a.	 Data Preprocessing
At this stage there will be elimination of several 

schedule candidates in each class that are impossible to use. 
This happens because the candidate’s schedule and room 
have clearly violated the hard constraints. Otherwise, if 
those candidates were retained, it will interfere with the 
initial solution search process and the solution optimization.

The first elimination is carried out based on room 
usage restrictions, where there are rooms that cannot be 
used at a certain time. Each candidate schedule will be 
checked as shown in Figure 1. If there is a conflict, the 
candidate schedule will be deleted.

The next elimination is carried out on schedule 
candidates who violate the distribution constraints (Table 
2) in the form of hard constraints that present in each class. 
For example if there is a distribution limitation where class 
(x) must be scheduled on the same day (SameDay) as class 
(y), then the candidate schedule in class (x) which has the 
same day as the class schedule candidate (y) will be retained 
and the rest going to elimination. All schedule candidates 
in each class will be checked against the distribution 
boundaries in the form of hard constraints as shown in 
Figure 2. If it is found that there is a violation of any hard 
constraint distribution, the candidate schedule will be 
discarded.
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Figure 1. First Elimination Flow

Figure 2. Second Elimination Flow

The next elimination is carried out based on the class 
which has one schedule candidate. For example, suppose 
class (x) has only one schedule candidate. Then class (x) 
will be scheduled on that one candidate schedule because 
there is no other choice. Apart from class (x), if there is a 
class that has an overlap with the candidate schedule in 
class (x), it will be eliminated because it is not possible to 
use it. The flow of this elimination can be seen in Figure 3.
To see how effective this elimination is, the results will be 
compared with elimination and without elimination. 

b.	 Algorithm design and implementation
At this stage, a design will be carried out to make 

several changes to the IFS algorithm so that it is able to 
produce a viable solution. The IFS algorithm initially takes 
a variable randomly and tries to enter a randomly drawn 
value from that variable. If there is a conflict, the value 

in the conflict variable will be temporarily deleted. The 
pseudo code of the IFS algorithm can be seen in Figure 4.

Figure 3. Third Elimination Flow

Figure 4. IFS algorithm pseudocode

Changes made in this study involve changing the 
selection of values, or in this case in the form of a schedule 
candidate from being randomly selected to trying each 
candidate schedule until it is found that there is no conflict 
with other variables or in this case a class. If it is found 
that there are no schedule candidates that can be used in 
a scheduled class, one of the schedule candidates will be 
selected randomly and the other classes that conflict with 
the schedule candidate will be returned to the unscheduled 
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condition. The iteration will be repeated until it is found 
that all the class conditions have been scheduled and 
no one has violated the constraints. Figure 5 shows the 
changes made to the IFS algorithm.

To see if there is an impact of changes made to the IFS 
algorithm, this study runs and compares two algorithms, 
namely by using the IFS algorithm as shown in Figure 
4 and the IFS algorithm which has been changed as in 
Figure 5.

Figure 5. Pseudocode of IFS Algorithm Change Results

After obtaining the initial solution, optimization 
will be carried out using the Great Deluge algorithm 
with a hyper-heuristic approach. In the hyper-heuristic 
approach, there are two parts, namely move acceptance to 
choose whether or not a solution is accepted and low level 
heuristic (LLH) to change existing solutions.

In the move acceptance section, the Great Deluge 
algorithm is used. A new solution will be accepted if it 
produces a better result than the previous solution or if the 
solution is better than the level parameter value. The level 
parameter value is obtained from the initial solution value 
and will decrease continuously during the iteration. Figure 
4 illustrates how this algorithm works.

In the LLH section, mutations are used to make 
changes to the solution. Mutations work by changing 
the schedule of one of the classes. Figure 7 illustrates the 
changes made by mutations. Initially there was a class 6 
class that had been scheduled. Class 1 is scheduled for 
time slot 10, class 2 is scheduled for time slot 76, class 
3 is scheduled for time slot 23 and so on. Mutations are 
applied to class 3 by scheduling at a different time slot, 
namely 27 time slots. The mutation only affects one 
randomly selected class. Meanwhile, other classes will not 
change.
	 Furthermore, the algorithm design will be 
implemented through the Java programming language 
with a trial environment as shown in Table 3. 

Table 3. Algorithm Implementation Environment

Device Specification
Processor AMD Ryzen 7 3700U (8 

CPUs)
Ram 16GB
OS Windows

Intellij IDE 8.0.2

c.	 Final Solution Validation 
To ensure that the final result is a valid solution, the 

final result will be uploaded to https://www.itc2019.org/
validator to check the solution. The validator will check 
whether any hard constraints are violated or not. In 
addition, the validator will calculate the penalty value so 
that the penalty value on the validator web can be compared 
with the penalty value that is owned in this test to ensure 
that the program of implementing the algorithm that has 
been designed produces the correct results. Solutions that 
have been deemed valid by the web validator will be stored 
on the website.
  

Figure 6. Great Deluge Algorithm pseudocode

Figure 7. Examples of Mutation Operations in Scheduling

3.	 Results and Discussion

This section will explain the results obtained in this 
study.

a.	 Data Preprocessing 
After the data preprocessing process was carried out, 

a reduction in schedule candidates was obtained in each 
dataset. Tables 3, 4 and 5 display the number of schedule 
candidates, the number of eliminated schedule candidates 
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and the percentage of eliminations performed. Overall 
there is a reduction in schedule candidates by an average of 
19.4% of the 30 datasets tested. 

To see the impact of the data preprocessing process, a 
comparison was made between using the data preprocessing 
process and those that did not use the data preprocessing 
process. The result is that without the data preprocessing 
process, there are 8 datasets for which a solution cannot 
be found without violating existing hard constraints. The 
8 datasets are Agh-fis-spr17, Nbi-spr18, Pu-d5-spr17, Pu-
proj-fal19, Agh-fal17, Muni-fspsx-fal17, Muni-pdf-fal17 
and Pu-d9-fal19. 

The data preprocessing process has proven to be able 
to help find initial solutions without breaking existing hard 
constraints. This happens because if the schedule candidate 
is not eliminated in the data preprocessing process, the 
schedule candidate will interfere with the process of 
producing the initial solution. Schedule candidates who 
are unlikely to be used, can be selected in the process of 
generating the initial solution. This will have an impact on 
other classes and cause conflicts between classes.

b.	 Initial Solution and Final Solution
The initial solution was carried out after the data 

preprocessing stage by running the IFS algorithm which 
was adjusted to the 2019 ITC problem. The result was 
that this algorithm was able to produce an initial solution 
without breaking the hard constraints that existed in the 
entire dataset (30 datasets).  

To see the impact of changes made to the IFS 
algorithm, two experiments were carried out using the 
original IFS algorithm and using the IFS algorithm that 
had been changed. The result is that using the original 
IFS algorithm without making any changes is only able 
to produce an initial solution on one dataset, namely the 
Mary-spr17 dataset. This happens because the original IFS 
algorithm selects schedule candidates randomly, so that the 
search for solutions is not well focused on finding solutions 
without breaking the existing hard constraints.

The next step is to optimize each dataset by running 
1000,000 iterations. The result was that the largest penalty 
reduction was in the Lums-spr18 dataset, which was 
78% and the smallest penalty reduction was in the bet-
fal17 dataset, which was 7%. Overall, the average penalty 
reduction was 42%. Tables 6, 7 and 8 show the results of 
the comparison between the initial solution and the final 
solution after the penalty is applied.

In the Pu-proj-fal19, Bet-fal17, Agh-fal17, Bet-
spr18, Muni-fspsx-fal17 and Muni-pdfx-fal17 dataset, 
optimization can only reduce penalties by a percentage 
of between 7-11%, especially in the late dataset. This 
happens because the late dataset is the most difficult 
dataset by having more classes, rooms and boundaries 
than the middle and early dataset groups. The Great 
Deluge algorithm cannot explore solutions on a dataset 

like this because when a solution changes, hard constraint 
violations often occur so that the new solution cannot be 
accepted.

Table 4.  Preprocessing results on 10 datasets of early 
instances

Dataset
Number of  
Candidates 
Schedule

Number of  
Reduced 
Schedule 

Candidates

Percentage 
Reduction

Agh-fis-spr17 4373766 2715519 62%

Agh-ggis-spr17 353772 90790 26%

Bet-fal17 621508 101715 16%

Iku-fal17 3653791 102996 3%

Mary-spr17 169069 2177 1%

Muni-fi-spr16 48183 7371 15%

Muni-fsps-spr17 33810 2580 8%

Muni-pdf-spr16c 915725 43754 5%

Pu-llr-spr17 178424 47201 26%

Tg-fal17 77498 8116 10%

Table 5.  Preprocessing results on 10 middle instance 
datasets

Dataset
Number of  
Candidates 
Schedule

Number of  
Reduced 
Schedule 

Candidates

Percentage 
Reduction

Agh-ggos-spr17 2331431 1155289 50%

Agh-h-spr17 2693914 1539477 57%

Lums-spr18 591475 199391 34%

Muni-fi-spr17 57843 8508 15%

Muni-fsps-spr17c 439903 84340 19%

Muni-pdf-spr16 915752 43754 5%

Nbi-spr18 144682 3000 2%

Pu-d5-spr17 86802 9991 12%

Pu-proj-fal19 1937292 259255 13%

Yach-fal17 93648 3857 4%

Preprocessing results on 10 late instance datasets

Dataset
Number of  
Candidates 
Schedule

Number of  
Reduced 
Schedule 

Candidates

Percentage 
Reduction

Agh-fal17 6012899 2574797 62%

Bet-spr18 649353 98402 15%

Iku-spr18 3588585 122101 16%

Lums-fal17 606929 220968 36%

Mary-fal18 187962 5295 3%

Muni-fi-fal17 46341 6374 14%

Muni-fspsx-fal17 579535 156832 8%

Muni-pdfx-fal17 5054749 1223449 24%

Pu-d9-fal19 677889 79274 12%

Tg-spr18 85330 11529 10%
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c.	 Validate the final solution results
The final stage to ensure the results of the research are 

valid, validation of the final solution is carried out on the 
ITC 2019 website. The results are as in Figure 8, the 30 
solutions produced have proven to be solutions that do not 
violate existing hard constraints by storing these solutions 
on the validator web. The penalty results for each solution 
are also stored on the website.

Table 6.  Initial Solution and Final Solution on 10 dataset 
early instances

Dataset
Early 

Solution 
Penalty

Final Solution 
Penalty

Percentage 
Reduction

Agh-fis-spr17 38233 10858 72%

Agh-ggis-spr17 199432 107558 46%

Bet-fal17 414061 385290 7%

Iku-fal17 162211 112187 31%

Mary-spr17 77804 29161 63%

Muni-fi-spr16 24471 11222 54%

Muni-fsps-spr17 277511 150459 46%

Muni-pdf-spr16c 600126 517913 14%

Pu-llr-spr17 140771 55275 61%

Tg-fal17 26072 14548 44%

Initial Solution and Final Solution on 10 middle instance 
dataset

Dataset
Early 

Solution 
Penalty

Final 
Solution 
Penalty

Percentage 
Reduction

Agh-ggos-spr17 77059 22730 71%

Agh-h-spr17 55312 32717 41%

Lums-spr18 1638 361 78%

Muni-fi-spr17 23116 10158 56%

Muni-fsps-spr17c 657434 488529 26%

Muni-pdf-spr16 337279 212005 37%

Nbi-spr18 128733 58516 55%

Pu-d5-spr17 58746 30762 48%

Pu-proj-fal19 931627 831950 11%

Yach-fal17 29297 8382 71%

Initial Solution and Final Solution on 10 late instance 
datasets

Dataset Early Solution 
Penalty

Final Solution 
Penalty

Percentage 
Reduction

Agh-fal17 552095 493834 11%

Bet-spr18 482804 443992 8%

Iku-spr18 198190 149340 25%

Lums-fal17 2695 1467 46%

Mary-fal18 59431 23326 61%

Muni-fi-fal17 30133 12044 60%

Muni-fspsx-fal17 1132578 1002804 11%

Muni-pdfx-fal17 952705 871244 9%

Pu-d9-fal19 627582 480907 23%

Tg-spr18 104276 36242 65%

Figure 8. Validation Results

4.	 Conclusion

This research focuses on solving complex scheduling 
problems using the latest dataset from ITC 2019. The 
solution to this problem is carried out in two phases. The 
first phase is building an initial solution without breaking 
existing hard constraints. The second phase is optimizing 
the solution to make it better by reducing the number of 
penalties for violations of soft constraints.

The first phase is done by implementing the 
elimination of schedule candidates when preprocessing 
data and applying the IFS algorithm with some changes. 
As a result, all ITC 2019 datasets (30 datasets) were found 
to be viable initial solutions without breaking the hard 
constraints.

The second phase is optimization by applying the 
Great Deluge algorithm with a hyper heuristic approach 
using mutation LLH. The results obtained an average 
penalty reduction of 42%.
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