
KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

65

Vol. 7 No. 1 | April 2021

Location Selection Based on Surrounding Facilities in
Google Maps using Sort Filter Skyline Algorithm

Annisa*, Salsa Khairina
Department of Computer Science

IPB University
Bogor, Indonesia

*annisa@apps.ipb.ac.id

Abstract-Selecting a good location is an essential task in many location-based applications. Intuitively, a place is better
than another if there are many good facilities around it. The most popular location selection platform today is Google
Maps. Unfortunately, Google Maps has not provided the location selection based on the number of surrounding
facilities. Assume a situation when a college student wants to let a house near his campus. Besides the distance from the
campus, the student certainly will consider amenities surrounding it, such as food courts, supermarkets, health clinics,
and places of worship. The rent house will become a better choice if there are more of these facilities around. Skyline
query is a well-known method to select interesting desirable objects. We applied the Sort Filter Skyline (SFS) Algorithm
on Google Maps to get a small number of attractive locations based on the number of nearby facilities. This study has
succeeded in developing a web-based application that facilitates Google Maps users to search for places based on the
figure of surrounding facilities. The time required to do a location search using SFS in Google Maps will increase with
the number of facility types considered by the user.

Keywords: location selection, skyline query, sort filter skyline, surrounding facilities

Article info: submitted December 17, 2020, revised April 5, 2021, accepted April 21, 2021

1.	 Introduction

Selecting a good location is an important task in many
location-based applications. Intuitively one location is
better than another if there are many good facilities/
objects around it. Nowadays, there is an increasing need
to take surrounding facilities into account when selecting
a location. Chang et al. [1] explained when someone goes
to a place for business or leisure, choosing the best hotel
becomes very important. Syafrianto [2] and Popovic et al.
[3] explained that hotel selection is strongly influenced by
the goals and needs of visitors, not only in the form of hotel
facilities, but also geographical surrounding and public
facilities around the hotel. Another real world example is a
situation when a college student wants to rent a house near
his/her campus. Besides considering the distance from the
rent house to the campus, the student certainly will also
consider what facilities are available around the house,
such as places to eat, supermarkets, health clinics, and also
places of worship. The rent house will be considered as
better option if there are more of these facilities around.
Skyline query [4] is a widely known method for selecting

small number of interesting objects. Interesting objects,
also known as skyline objects, are non-dominated objects
in d-dimensional database. Borzsonyi et al. [4] defined
that an object is said to dominate another object if it is
equally good in all dimensions and better in at least one
dimension. Figure 1 illustrates the skyline query problem.
Consider a college student wants to rent a house. H1 to
H6 are the houses for rent. Table in Figure 1 (a) shows
the number of supermarkets and restaurants surrounding
each house. Using skyline query algorithm, user can get
the list of interesting rent houses based on the number of
supermarkets and restaurants surround them. In Fig. 1
(b), H5 and H6 are skyline objects. H1, H2, H3, and H4
are dominated by H5 and H6, because H5 and H6 has
more surrounding supermarkets and restaurants. H5 and
H6 do not dominate each other because H5 has a greater
number of surrounding restaurants but a lower number of
surrounding supermarkets than H6 and vice versa. Using
skyline query we can suggest H5 and H6 to the college
student as options for renting a house. He/she can choose
H5 if his/her preference is more surrounding restaurants,
otherwise he/she can choose H6. There are many skyline

http://journals.ums.ac.id/index.php/khif

Location Selection Based...66

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

query algorithms, including [5, 6, 7, 8]. The skyline
method has also been used in location and route selection
such as in [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Figure 1. Illustration of skyline query problem

In [16], Arefin et al. uses skyline queries to address
the problem of site selection by considering the type
and number of surrounding facilities. Figure 2 shows an
illustration of location selection problem in Arefin et al.
[16]. Let us consider problem of the college student in
finding rent house above.

Figure 2. Illustration of location selection problem in Arefin
et al. [15]

At first step, user gives the reference point (Q) and
a radius distance (ϵ1). This Q reference point is generally
a popular place in an area. In this example, campus is the
reference point. Based on ϵ1 distance from Q, spatial
objects of the target facility are selected. The houses (h)
in Figure 2 are the examples of target facility. For the next
step, we only consider rent houses within distance ϵ1 from
Q. In the second step, the user determines the facility
types that will be considered around the target (candidate)
objects (houses within ϵ1 distance from Q). In the third
step, if user considers n-surrounding facility types, then the
number of facility types 1 to n at radius ϵ2 of each target
object will be counted. In this example, user considers two
types of facilities, restaurant (r)and supermarket (s). Thus
the number of restaurant and supermarket within radius
ϵ2 from each target objects is calculated and used as an
attribute for each target object, to be combined with non-
spatial information such as ratings, prices, and so on. Arefin

et al. uses a variant of the R-tree index structure called aR-
tree [21] to store spatial and non-spatial information from
each facility types. In the last step, skyline query algorithm
is performed like in Figure 1 to select skyline objects from
the previous target objects. Arefin et al. applied Sort Filter
Skyline (SFS), an algorithm introduced by Chomicki et
al. [22] to find skyline objects. SFS is an enhancement of
the naïve skyline algorithm, namely Block Nested Loops
(BNL). SFS uses entropy function value to presort the
dataset to reduce domination comparison.

Although the type of query like in [16] is very
important in location selection application, unfortunately
it has not been widely applied in our society. For this
reason, this research aims to develop a web-based
application so that users can run query in [16] on the
most popular location selection platform, Google Maps.
Many researches have been using Google Maps [23, 24,
25, 26, 27], however based on our knowledge, no research
has been considering number and types of surrounding
facilities for location selection in Google Maps.

Generally, Google Maps query, like Place Search and
Nearby Search allow us to search for place information in
specified area using a variety of categories. It returns a list of
place location along with the summary information about
each place, but never consider number of surrounding
facilities for the selection. In this paper we developed a
web-based application using SFS algorithm and Google
Maps API so it can facilitate Google Maps users to search
for location based on the number of surrounding facilities.

The remainder of this paper is organized as follows.
In section II we briefly present location selection based on
surrounding facilities problem in [16]. Section III provides
our research methodology in detail. In section IV we
conducted some experiments and explained them briefly
in results and discussions. Finally, we put our conclusion
in Section V.

2.	 Sort Filter Skyline (SFS) Algorithm

Skyline query has been widely used for location
selection. Kodama et al. [28] and Wong et al. [29]
introduced a framework for skyline query considering
surrounding facilities using one type of facility. Arefin
et al. [16] consider more types of facilities in location
selection. In their research Arefin et al. explained that there
are four calculation steps to obtain locations that take
into consideration surrounding facilities according to user
preference as we mentioned in the previous section. In the
final step, the SFS algorithm is used to get skyline objects
from a number of existing candidate objects.

Sort Filter Skyline (SFS) is a skyline query algorithm
introduced by Chomicki et al. [22]. SFS is an enhancement
of the naïve skyline algorithm, namely Block Nested Loops
(BNL). Block Nested Loops (BNL) is an algorithm to read
input data and compares each input with existing objects
in memory. BNL does not use indexes and sorting. At
first run, the first data directly enters the memory because
there are no other objects in the memory. Subsequently

http://journals.ums.ac.id/index.php/khif

Location Selection Based... 67

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

until all input data is read, if the input object is dominated
by at least one object in memory then the input object
is eliminated. If the input object is not dominated by
one or more objects in memory, then the input object is
nominated as skyline and any object that is dominated by
the input object is removed from memory.

SFS is the development of the BNL algorithm by
sorting data according to its entropy function values.
Entropy formula is:

E(t) = ∑ln(t[hi]+1)				 (1)

where is normalization of the candidate object attribute
values (like rating and number of surrounding facilities).
The entropy function above is always a monotone scoring
function [8]. Based on Kalyvas et al. [30], the equation
produces the most effective filtering of objects during
skyline calculation. Intuitively, the smaller the entropy
value of an object, the less likely it is to dominate.

Chomicki et al. [22] describes that an object in data
which has a high entropy value can eliminate more objects
away because it is guaranteed to dominate other objects.
Therefore, processing sorted data has the advantage that
no object in the data can be dominated by any object that
enters afterwards. Thus, the data sorted by the value of
the entropy function can eliminate the dominated object
quickly.

The entropy function value is used to help filtering
skyline objects by sorting data. SFS algorithm processes
data that has been sorted using the entropy function. The
object that has the largest entropy value is the skyline so it
will go straight into memory because the object dominates
other objects. After that, the next object is compared to the
skyline object in memory. If the object is dominated by an
object in memory then the object is eliminated because it
is not a skyline object. On the other hand, if the object is
not dominated by any object in memory then the object is
saved to memory because it is a skyline object. Therefore, it
is enough to compare an input object with skyline objects
in memory without having to compare with all objects
in the data. This happens because objects that have been
previously eliminated are already dominated by skyline
objects in memory, so it is enough to compare the input
object with objects already in memory.

3.	 Methods

The data used in this research is Point of Interest
(POI) data from Google Maps. POI data consists of spatial
and non-spatial information. The spatial information is in
the form of POI locations (latitude and longitude), while
non-spatial information is in the form of POI type and
POI rating. We use radius (near-by) feature that is already
available in the Google Maps API to implement radius ϵ1
and ϵ2.

This study consisted of 5 stages. The first step is to
determine the input, then proceed with making a data

collection module. After the data obtained, then the data
is processed by the Sort Filter Skyline (SFS) module, then
the system is implemented, after that the system is tested,
and finally conducting experiments with several scenarios.
We used sample data to simplify the explanation of the
method that we use in this research.

a.	 Determining Input Data
In this stage, we determined the input data needed

to perform skyline operations. User input are spatial and
non-spatial information. The information expected from
the user are: the reference location that will become the
reference point for searching spatial objects (Q), the type
of object desired (type of target objects), the maximum
radius from the reference location (ϵ1), the type of
surrounding facilities, the maximum radius of the facilities
from target objects (ϵ2), and the minimum rating from the
surrounding facilities.

b.	 Creating Data Collection Module
The data collection module utilized two types of

Google Maps’ Place API. First we used Find Place to
get geometry information (latitude and longitude) of
the reference point, using reference point’s place name
as parameter. For example, if user input IPB University
as the location of the reference point, the API returns
geometry information of IPB University, which are
latitude: -6.56636555 and longitude: 106.72148035.
This geometry information is used as parameter to search
for target objects surrounding the location of the reference
point

Google Maps API Nearby Search is then used to get
candidate objects and facilities surrounding the reference
point, along with the required non-spatial information,
which is rating. The parameters used are the geometry
information of the search location point, the type of spatial
object around the location of the reference point, the
surrounding facilities (restaurants, ATMs, etc.), and the
maximum radius. Table 1 shows candidate objects of place
for rent within 0.7 km from IPB University: Landhius
IPB Guest House, IPB International Dormitory, Amarilis
Guest House, Al-Quds Boarding House, Arif Dormitory,
and Dramaga Village Boarding House. After obtaining a
candidate (target) object, this API is also used to find the
number of facilities around the candidate object using the
radius information from user. Maximum number of data
obtained from requests for one type of POI is 60 data. User
can input minimum rating of facility type, or can choose
“None” in the system to not consider rating information
from the facilities around the candidate object. This data
collection module is run online to get data from Google
Maps.

The results of this module are candidate objects data
along with rating and number of facilities around them.
Table 1 is an example of the results from the data collection
module. Some candidate objects do not have rating info,
so the rating value is displayed as 0.

http://journals.ums.ac.id/index.php/khif

Location Selection Based...68

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Table 1. Example of data collection module results

Candidate Object Rating Restaurant-
count ATM-count

Landhius IPB Guest
House 4.3 9 2

IPB International
Dormitory 4.5 10 2

Wisma Amarilis 4.3 0 1

Arif Dormitory 0 9 1

Al-Quds Boarding
House 0 9 2

Dramaga Village
Boarding House 4.6 9 2

c.	 Creating a Sort Filter Skyline (SFS) Module
SFS algorithm is implemented using Python. Input

data for SFS module is the result of the data collection
module, as displayed in Table 1. Within SFS module, the
input data is then sorted based on the highest to lowest
entropy function values of the data calculated using (1),
which results is presented in Table 2. Because the maximum
value of the candidate object is 60, the candidate object
attribute value is normalized by multiplying each candidate
object by 0.001 so that the candidate object entropy value
is between 0 and 1.

Table 2. Candidate location after sorted by entropy value

Candidate
Object Rating Restaurant-

count
ATM-
count

Entropy
Value

IPB International
Dormitory 4.5 10 2 0. 016365

Dramaga Village
Boarding House 4.6 9 2 0. 015480

Landhius IPB
Guest House 4.3 9 2 0.015184

Al-Quds
Boarding House 0 9 2 0.010940

Arif Dormitory 0 9 1 0.009950

Amarilis Guest
House 4.3 0 1 0.005286

Subsequently, the objects that are dominated by other
objects are removed. Thus, the obtained skyline objects are
Dramaga Village Boarding House and IPB International
Dormitory. Dramaga Village Boarding House is skyline
because it has the highest rating, while IPB International
Dormitory has the highest number of surrounding
restaurants.

SFS algorithm is able to return skyline objects that
consider several types of surrounding facilities from a
candidate object. Currently, Google Maps is only able to
consider just one type of facility from a location.

d.	 System Implementation
System implementation stage is carried out with the

design and development of SSQ in web-based application.

Web design phase is started by creating activity diagram
that illustrates the flow of the system, as shown in Figure
3. Then simple mockups is made for developers to build
the system.

Next, a web application prototype was developed
based on activity diagrams and system requirements. The
Google Maps API used is the same as in the data collection
module, which is the Place API. The parameters required
by the API are obtained from user input. Figure 4 and 5
is the result of the web interface on the location search
feature based on the type and number of surrounding
facilities which consist of the location search form page
and the result recommendation location page.

The system processes Google Maps data to get
location recommendations based on user input. Users are
asked to fill in their preferences in a form, then the system
provides a list of recommended locations according to the
preferences given by the user.

Figure 4 is a form page that the user must complete.
The reference location is a reference point for users to search
for spatial objects. The type of object searched is the type
of spatial object desired by the user around the reference
point. The maximum object radius is the maximum radius
from the reference point to find the desired object. Types
of facilities around the object are the facilities preferred
user wants around the spatial object. The maximum radius
of the surrounding facility is the maximum radius of the
facility of each object in unit of meter and the minimum
rating of the surrounding facility is the minimum rating
desired by the user for each facility type.

Figure 3. Activity Diagram

Figure 5 is a result page where there are red and
green icons. The green icon is the location / reference
point. The red icon is the result of the skyline which is
the recommended locations for users based on the given
preference.

http://journals.ums.ac.id/index.php/khif

Location Selection Based... 69

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Figure 4. The web interface of form page

Figure 5. The web interface of result page

Figure 4 shows IPB University with green markers as
the reference point to select interesting rent house with a
maximum radius of 1 km. Facilities to be considered around
rent house are restaurants with a maximum radius of 0.5 km
without considering restaurant ratings. After processing, in
Figure 5 shows the skyline rent house with red markers, IPB
International Dormitory and D’kost Pavilion. Results form
in Figure 5 also contain information about the number of
restaurant around recommended skyline rent house along
with the rating.

e.	 System Testing
This stage is carried out by testing the system that have

been built using Blackbox testing method. Blackbox testing
method is a software testing method that focuses on system
functionality, specifically on the input and output without
testing the algorithm. The test conducted was a system
interaction from filling the form to producing a list of location
recommendations based on input on the form.

f.	 Experiments
System performance tests are related to location search

time on Google Maps. We conducted some experiments with
these scenarios:
•		 Scenario 1: to test system performance towards the

increase of number of surrounding facilities. We set the
number of candidate objects to 5 objects, and increase
the surrounding facilities by 2, 5, 10, 15, and 20.

•		 Scenario 2: to test system performance towards the
increase of the radius (distance) of surrounding facilities
from reference point Q. We fixed the number of
candidate objects and reduce or enlarge the radius from
reference point.

•		 Scenario 3: to test system performance towards the
increase of number of surrounding facility type. Since
the number of facility types is the number of dimension
of candidate objects, we varies the number of facility
type to 2D, 4D, 6D and 8D and varying the size of
data for each facility from 5 to 20 data.

•		 Scenario 4: to test the effect of data collection module
to the entire system performance.

3.	 Result and Discussion

a.	 System Testing
Blackbox testing method is used to test the results of

the web that has been developed. Based on all the test results,
it can be seen that all functions in the location search feature
based on the type and number surrounding facilities have
been successfully implemented. The implementation have
included the form filling function to get a list of location
recommendations based on input on the form. The results
of the Blackbox test can be seen in Table 3 and code has
been published in Github repository at https://github.com/
salsakhairinaa/BasedSurroundingSkyline.git.

http://journals.ums.ac.id/index.php/khif
https://github.com/salsakhairinaa/BasedSurroundingSkyline.git.
https://github.com/salsakhairinaa/BasedSurroundingSkyline.git.

Location Selection Based...70

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Table 3. Example of data collection module results

Testing Name Testing Conditions Test Result

Select the location search feature If the user clicks on the location search
feature based on the type and number
of facilities around.

The Location Search form page appears.

Input the data If all fields on the form have been filled
in, then the user clicks the “Process”
button.

The system will display a result page that
lists the location recommendations along
with rating information and the number of
facilities to the user.

If all fields on the form are not filled
in, then the user clicks the “Process”
button.

The system will remain on the form page
and the message “Please complete the data”
appears.

g.	 Experiments
Tests are performed to see the system performance

measured in time required to complete the search. In the
first scenario, the number of candidate objects is fixed at
5 objects, while the type of surrounding facilities is varied
from 2, 5, 10, 15, to 20. The second scenario is to observe
the effect of different radius on the system performance by
setting two radius distance: a small radius (500 meters),
and a large radius (5000 meters), while the number of
candidate objects are fixed.

Each experiment was carried out with 10 iterations,
and the result of each iteration is recorded. Table 4 shows
the results of scenario 1 and scenario 2 tests. Figure 6 shows
the results of the average execution time in seconds (d)
which reveals that the execution time increases along with
the increase in the number of facility type. The experiment
also reveals that there is no big difference in the average
execution time for small and large radius. This shows that
the time required for location search based on surrounding
facilities is greatly influenced by the number of facility
types that are taken into account.

Figure 7 displays the experiment results from scenario
3. Figure 7 shows that the running time of the SFS
algorithm increases with increasing data size. The execution

time also increases with increasing data dimensions or the
number of facility types around the candidate object. It
can be seen that adding the data collection module in the
system significantly increases processing time of location
search using SFS algorithm.

Figure 8 shows experiment results of scenario 4,
the execution time of the SFS algorithm which considers
number of facilities. The data used in the SFS algorithm
is set to 20 candidate objects with the number of facilities
considered are 2, 4, 6, and 8. Figure 8 (a) is the execution
time of the SFS algorithm in finding the location from
existing data. Figure 8 (b) is the execution time starting
from collecting data using Google Maps until determining
the location using SFS. Based on the execution time, it can
be concluded that the execution time increases with the
increasing number of facilities being considered. The data
used in this study are dynamic data so that the execution
time in this study increases because of the data collection
process, but this does not affect the performance of the
SFS algorithm. The complexity of the SFS algorithm in
the best case state is O(dn + nlogn) and in the worst case is
O(dn2), where d is the number of dimensions or number of
facilities considered and n data size or number of candidate
objects.

Table 4. Average of execution time and radius

Iterations Number of Attributes Radius

2 5 10 15 20 500 5000

1 11.54 48.46 96.64 116.47 203.33 14.42 14.51

2 10.06 45.18 95.38 184.06 157.59 13.60 13.33

3 9.40 45.39 83.63 125.23 205.47 14.27 14.73

4 10.70 55.01 97.71 103.20 204.02 14.12 15.49

5 10.11 57.44 98.26 105.44 199.63 13.32 14.84

6 13.77 53.48 93.99 115.34 201.49 14.44 13.27

7 13.74 55.49 94.90 113.29 197.62 12.02 16.47

8 9.49 44.51 88.48 110.68 201.98 12.72 15.87

9 10.91 56.27 88.73 118.45 199.93 14.31 13.51

10 9.02 56.08 87.98 111.14 201.09 13.75 14.02

Average of execution time (s) 10.87 51.37 92.57 120.33 197.21 13.70 14.60

http://journals.ums.ac.id/index.php/khif

Location Selection Based... 71

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

4.	 Conclusion

This research has succeeded in implementing the SFS
algorithm in Google Maps to answer location selection
based on surrounding facilities query. The results of
the study are a web-based application with simple user
interface so that Google Maps users can run the query
easily. The time required to search for a location depends
on the number of facility types considered by the user. SFS
algorithm performance is affected by the increase in data
size and data dimensions.

Figure 6. The average execution time based on increasing
number of attributes

Figure 7. The average SFS execution time based on number
of data and facilities

 (a) (b)
	 Figure 8. (a) SFS algorithm execution time (b) The

execution time of the data collection module is continued
by the SFS module

Reference

[1]	 Z. Chang, M.S. Arefin, Y. Morimoto, Hotel rec-
ommendation based on surrounding environ-
ments, In Second IIAI International Conference
on Advanced Applied Informatics, 2013, pp. 330-
336.

[2]	 A. Syafrianto, “A Development of Spatial Skyline
Query Based on Surrounding Environment for
Data Streaming Using Apache-Spark”, M.Kom.
thesis, Computer Science, IPB University, Bogor,
ID, 2010.

[3]	 G. Popovic, D. Stanujkic, M. Brzakovic, and D.
Karabasevic, A multiple-criteria decision-making
model for the selection of a hotel location. Land
use policy, 2019, pp.49-58.

[4]	 S. Borzonyi, D. Kossmann, and K. Stocker, The
skyline operator, In Proc. of ICDE, 2001, pp.
421-430.

[5]	 K.L. Tan, P.K. Eng, and B.C. Ooi, Efficient pro-
gressive skyline computation In Proc. of VLDB
Conference, 2001, pp. 301-310.

[6]	 D. Kossmann, F. Ramsak, and S. Rost, Shooting
stars in the sky: An online algorithm for skyline
queries, In Proc. of VLDB Conference, 2002, pp.
275-286.

[7]	 D. Papadias, Y. Tao, G. Fu, and B. Seeger, An opti-
mal and progressive algorithm for skyline queries,
In Proc. of ACM SIGMOD Conference, 2003,
pp. 467-478.

[8]	 J. Chomicki, P. Godfrey, J. Gryz, and D. Liang,
Skyline with Presorting: Theory and Optimiza-
tions, In Proc. of the international IIS: IIPWM’06
conference, 2006, pp. 595-604.

[9]	 S. Shah S, A. Thakkar, S. Rami, A Survey paper
on skyline query using recommendation system,
In Journal of Data Mining & Emerging Technolo-
gies, 2016, pp. 1-6.

[10]	 M. Sharifzadeh, and C. Shahabi, The spatial sky-
line queries, In Proc. of VLDB, 2006, pp. 751-
762.

[11]	 W. Son, M. Lee, H. Ahn, and S. Hwang, Spatial
skyline queries: an efficient geometric algorithm,
In Proc. of SSTD,2009, pp. 247-264.

[12]	 X. Guo, Y. Ishikawa, and Y. Gao, Direction-based
spatial skylines, In Proc. of ACM SIGMOD Con-
ference, 2010, pp. 73-80.

[13]	 K. Deng, X. Zhou, and H.T. Shen, Multi-source
skyline query processing in road networks In Proc.
of ICDE, 2007, pp. 796-805.

[14]	 M. Safar, D.E. Amin, and D. Taniar, Optimized

http://journals.ums.ac.id/index.php/khif

Location Selection Based...72

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

skyline queries on road networks using nearest
neighbors, In Journal of Personal and Ubiquitous
Computing, vol. 15, issue 8, 2011, pp. 845-856.

[15]	 Y.K. Huang, C.H. Chang, and C. Lee, Contin-
uous distance-based skyline queries in road net-
works, In Journal of Information Systems, vol. 37,
2006. pp. 611-633.

[16]	 M.S. Arefin, Jinhao X, Zhiming C, Morimoto Y,
Skyline query for selecting spatial objects by utiliz-
ing surrounding objects, In Journal of Computers,
2013, pp. 1742-1747.

[17]	 T. Djatna, F.H. Putra, dan A. Annisa, An Im-
plementation of Area Skyline Query to Select
Facilities Location Based on User’s Preferred Sur-
rounding Facilities. In Proc. of IEEE conference,
ICACSIS, 2020, pp. 15-20.

[18]	 C. Li, A. Annisa, A. Zaman, M. Qaosar, S.
Ahmed, and Y. Morimoto, Mapreduce algorithm
for location recommendation by using area skyline
query. In Algorithms, 11(12), 2018, pp.191.

[19]	 L.G. Asri, and A. Annisa, Application of Sky-
line Query on Route Selection (the Case Study
of Bogor City Roadway). In the Proc. of IEEE
conferences, International Conference on Com-
puter Science and Its Application in Agriculture
(ICOSICA), 2020, pp. 1-6.

[20]	 A. Annisa, A. Zaman, and Y. Morimoto, Area
skyline query for selecting good locations in a
map. Journal of Information Processing, 24(6),
2016, pp.946-955.

[21]	 D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, Effi-
cient OLAP operations in spatial data warehouses,
In Lecture Notes in Computer Science, 2001, vol.
2121, pp. 443-459.

[22]	 J. Chomicki, P. Godfrey, J. Gryz, and D. Liang,
Skyline with presorting, In Proc. of ICDE, 2003,
pp. 717-816.

[23]	 E. Costa-Montenegro, F. J. González-Castaño,
D. Conde-Lagoa, A. B. Barragáns-Martínez, P. S.
Rodríguez-Hernández and F. Gil-Castiñeira, QR-
Maps: An efficient tool for indoor user location
based on QR-Codes and Google maps, In 2011
IEEE Consumer Communications and Network-
ing Conference (CCNC), 2011, pp. 928-932.

[24]	 P. Pokorný, P., 2017, Determining Traffic Levels
in Cities Using Google Maps. In Proc. of IEEE,
The Fourth International Conference on Mathe-
matics and Computers in Sciences and in Industry
(MCSI), 2017, pp. 144-147.

[25]	 M.H. Erol and F. Bulut, Real-time application of
travelling salesman problem using Google Maps
API. In Proc. of IEEE, Electric Electronics, Com-
puter Science, Biomedical Engineerings’ Meeting
(EBBT), 2017, pp. 1-5.

[26]	 C. Costa, J. Ha, and S. Lee, Spatial disparity of
income-weighted accessibility in Brazilian Cities:
Application of a Google Maps API. Journal of
Transport Geography, 90, 2021, p.102905.

[27]	 T. Listyorini and S. Muzid, Population resizing
on fitness improvement genetic algorithm to opti-
mize promotion visit route based on android and
google maps API. In AIP Conference Proceedings,
Vol. 1855, No. 1, 2017, p. 060001.

[28]	 K. Kodama, Y. Iijima, X. Guo, and Y. Ishikawa,
Skyline queries based on user locations and pref-
erences for making location-based recommenda-
tions, In Proc. of ACM LBSN, 2009, pp. 9-16.

[29]	 R.C. Wong, A.W. Fu, J. Pei, Y.S. Ho, T. Wong,
and Y. Liu, Efficient skyline querying with variable
user preferences on nominal attributes, In Proc. of
VLDB, 2008, pp. 1032-1043.

[30]	 C. Kalyvas and T. Tzouramanis, A survey of
skyline query processing, In arXiv preprint arX-
iv:1704.01788, 2017, pp. 19-20.

http://journals.ums.ac.id/index.php/khif

