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Abstract-Acute pulmonary edema (EPA) is a condition of emergency respiratory distress that results from the sudden 
and rapid build-up of fluid into the lungs. Rapid screening of EPA patients is necessary so that radiologists can make the 
prognosis as early as possible. In addition, reliance on the expert’s knowledge of reasoning also hinders the diagnostic 
process. This research was conducted by developing an architectural model for machine learning systems with a deep 
learning approach. With the concept of representative learning, the denseNet-CNN algorithm connects each layer to 
another by means of a feed-forward. The data used is Image CXR-14 specifically labeled pulmonary edema pathology. 
The size of each CXR-14 image is 1024 × 1024 with a value of 8 bits grayscale. The size of each CXR-14 image is 
1024 × 1024 with a value of 8 bits grayscale. The architectural model development stages consist of the preparation 
stage, data resampling, data training and data testing. Optimizer parameters used are Adam’s optimizer, learning rate 
of 0.0001 and weight decay = 1e-5 and the loss used is binary cross entropy. The resulting mean AUROC analysis 
showed the sensitivity value of the 10% dataset was 71.493% and the specificity value of 10.011% was obtained at the 
second hold of the k-fold cross validation method after holdout validation, so that the resulting model was valid. The 
detection system developed from the denseNet-CNN model is expected to help radiologists identify abnormalities in 
CXR images quickly, precisely, and consistently. The denseNet-CNN model is also developed in the form of a heatmap 
visualization by localizing the features you are looking for. With localization in the form of a heat map, detection of 
pathological abnormalities of PEA is easier to do and to be recognized.
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1. Introduction 

Acute pulmonary edema (EPA) is a condition of 
urgency characterized by a rapid respiratory emergency 
caused by displacement and accumulation of fluid in 
the lungs. According to the source of the cause, EPA is 
divided into two types, namely cardiogenic EPA and 
noncardiogenic EPA. The high prevalence rate of EPA 
can be seen from a study involving approximately 600 
hospitals in Europe, Latin America, and Australia. Data 
show EPA is present in 37% of patients with acute heart 
failure [1][2].

Fast and precise screening for patients with EPA cases 
is needed so that doctors can make the prognosis as early as 
possible. One of the initial screenings performed on EPA 
patients is by doing a chest X-ray examination, known as 
ChestX-Ray (CXR) screening. Generally, the reading and 
diagnosis of CXR images is performed by a radiologist by 
comparing the CXR images of EPA patients with normal 
CXR images to detect abnormalities [3 [4].

Dependence on the knowledge of an expert radiologist 
regarding the principles of anatomy, physiology, and 
pathology is a factor that can hinder making a diagnosis 
as early as possible [5]. Another difficulty in the process of 
detecting CXR images is the difficulty of expert radiologists 
in developing consistent reasoning techniques in reading 
CXR images while considering all common chest diseases 
that require a long time to diagnose a CXR image [6].

One solution to solve this problem is to develop a 
machine learning system. Amit Kumar Jaiswal’s research, 
entitled Identifying Pneumonia in Chest X-Rays: A Deep 
Learning Approach uses the Mask-RCNN method, used 
a deep neural network that combines global and local 
features for pixel-based segmentation. The identification 
model proposed in the study achieved reasonably good 
performance after evaluating a dataset of chest radiographs 
depicting potential causes of pneumonia [7].

The approach recommended in this study is to use 
deep learning (DL) convolutional neural network models. 
The DL approach adopts the way the human brain works 
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in managing data as representative learning which is then 
classified into layers. Research by Huang, Liu, Weinberger, 
& van der Maaten conducted in 2017 shows the importance 
of layer depth, better accuracy, and efficient training will 
be achieved if CNN has a closer connection between the 
layers that are close to the input and the layers that are close 
to it. with output [8]. DenseNet has an architecture that 
connects each layer to another in a feed-forward manner. 
Densenet itself has several advantages, namely: reducing 
the vanishing-gradient problem, strengthening feature 
propagation, reusing features, and reducing the number of 
parameters [9][10][11].

The computer-assisted detection system is expected 
to help radiologists identify abnormalities in CXR images 
quickly, precisely, and consistently. Computers can be 
taught to read and process a very large number of CXR 
image scans in a short amount of time. to confirm the 
results found by the radiologist and potentially identify 
other findings that may have been found. The resulting 
model is an artificial intelligence mechanism that can 
direct radiologists to make better diagnostic decisions for 
patients.

2. Methods

a. Data collection
The CXR images used in the CNN architectural 

model developed in the study were obtained from the public 
dataset of NIH Clinical Center, a clinical research hospital 
for the National Institutes of Health based in Maryland - 
United States, called ChestX-ray14 (CXR-14). This public 
dataset is the largest CXR dataset available to the public, 
containing 112,120 anonymous CXR front view images 
derived from 30,805 patients including patients with 
advanced lung disease. Each dataset summary page also 
contains the license terms and citation requirements which 
can be accessed on TCIA datasets from Cloud Storage, 
BigQuery, or by using the NIH Clinical Center’s Cloud 
Healthcare API [12][13]. One of the CXR-14 images used 
is shown in Figure 1.

Figure 1. CXR image that identifies lung masses

The size of each CXR-14 image is 1024 × 1024 with 
a value of 8 bits grayscale as shown in table 1.

Table 1. Number of positive labels per pathology in the 
CXR-14 dataset

No. Pathology Number of Positive 
Labels

Percentage of the 
amount

1 Edema 2,303 2.05%

The number of positive labels for pulmonary edema 
was 2,303 with the assumption that there would be 
redundancy of patient data between existing pathology 
labels.

b. DenseNet CNN Procedure
The proposed denseNet-CNN model development 

procedure is as follows:
Step 1: The preparation stage
In this preparation stage, analysis is carried out first 
to adjust the Deep Learning Framework to be applied 
with the availability of hardware in conducting training, 
validation and testing of the CNN model to be developed, 
as for the specifications of the hardware to be used are as 
follows:
-   Desktop CPU: Intel (R) Core (TM) i3-8100 CPU 

@ 3.60GHz
-   Memory: 8052MB
-   VGA: NVIDIA Corporation GP107 [GeForce 

GTX 1050] Storage Media: 256GB Solid State Disk

Step 2: Re-Sampling Data
Modifications to the algorithm applied to the CXR-14 
PEA dataset resulted in an underfit model due to imbalance 
data, therefore re-sampling the CXR-14 dataset, in order 
to provide valid results. The process of re-sampling this 
dataset begins with training on less data, which in this 
study was determined as much as 10% of the total dataset, 
which includes: all data with a positive PE label found 
on CXR-14, and the rest randomly chooses data labeled 
PE negative. [14] Re-sampling the dataset obtained is 
separated systematically using Python coding into training 
data, validation data and testing data. Resampling Dataset 
for Hold-out validation is illustrated  in Figur 2  & 3.

Figure 2. Resampling Dataset for Hold-out validation
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Figure 3. Resampling Dataset for Hold-out validation

Step 3: Training Stage
Furthermore, experiments and validations were 

carried out on the CheXNet scripting sources found on 
the github repository portal, this study determines the 
implementation of the PyTorch DL Framework made 
by Andrey G. (zoogzog) on the link https://github.com/
zoogzog/chexnet . Referring to the selected scripting, some 
environmental elements for the DL framework need to be 
prepared first, namely using: [12]
-  Operating System: Ubuntu 17.10
-  Compilers: C (GCC) 7.2.0
-  CUDA compilation tools: NVIDIA CUDA, V8.0.61

Experiments were carried out by replicating Python 
coding in the PyTorch environment that implements 
training and validation functions so that the model is in 
the form of a file that will be used in the testing stage. The 
optimizer used is Adam’s algorithm as a standard parameter 
that can produce output quickly. The learning rate used is 
0.0001, the weight decay is 1e-5, and the loss used is the 
cross entropy loss.

Step 4: Testing Phase
Furthermore, the testing process is carried out to 

produce AUROC performance against the PEA pathology 
contained in CXR-14. The distribution of the amount of 
training, validation, and testing data used in scripping for 
the DL framework is shown in table 2.

Table 2. Distribution of Total Data Training, Validation and 
Testing on Scripting

Image CXR Training 
process

Validation 
process

Testing 
process

amount 78,468 data 11,219 data 22,433 data

Step 5: The resulting output
The AUROC performance obtained at this 

preparation stage is then compared with the results 
obtained by Rajpurkar et.al., in their journals as a reference 

in proceeding to the research implementation stage, as 
shown in table 3[15].

Table 3. Comparison of the results of testing the DenseNet 
algorithm between the results of Rajpurkar et.al., and the 

results of testing scripts for pulmonary edema

Patology CheXNet-14 Result

Acute Pulmonary Edema 0.8878 0.9017

AUROC mean 0.841 0.8508

CNN’s DenseNet Architecture Model Modifications
The architectural model developed using the 

DenseNet CNN algorithm which has advantages in 
implementing the depth of a layer, better accuracy, and 
efficient training will be achieved if CNN has a closer 
connection between the layer close to the input and 
the layer close to the output. Densenet CNN has an 
architecture that connects each layer to another by means 
of feed-forward [16][17][18].

The modification of CNN’s DenseNet architectural 
model in this study can be seen in Figure 4.

Figure 4. CNN’s DenseNet Architectural Model for EPA 
Disease Abnormality Detection

Generally, the CNN architecture consists of the 
input layer, hidden layer and output layer stages. CNN’s 
DenseNet architecture above by skipping processes in 
hidden layers. The effect of the skip hidden layer is that 
the loss value from the previous layer can be carried to 
the next network so that the loss after the skip process 
is a combination of loss with the loss brought before by 
the skip connection. In this study, the skip connection 
added to the CNN architecture with the DenseNet 
algorithm can minimize the vanishing-gradient problem 
so that feature propagation can be strengthened, repetitive 
features on features, and reduces the use of parameters in 
the architectural model being developed.

Adam Optimizer was chosen because it is the most 
popular algorithm and it can produce output faster and 
better than other methods. The optimization done by 
Adam can be used as a substitute for the classic stochastic 
gradient descent procedure so that it can update the 
network weight repetitively on features based on training 
data. The stochastic gradient descent function maintains 
one learning rate for all weight updates used, where the 
learning rate will not change during the training process. 
[19] [20]
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The learning rate used is 0.0001. The learning rate 
is maintained for each network weight (parameter) and 
is adapted separately as learning unfolds. With Adam’s 
algorithm it is also possible to calculate individual adaptive 
learning rates for parameters different from the predicted 
first and second moments of the gradient. [21]

In the classification layer, a full connected softmax 
and a global average pool will be generated where the 
diagnoses of how many abnormalities are detected in the 
CXR-14 heatmap image.

2. Result

a. Holdout Validation at 10% Chest X-ray 14 
Dataset
The distribution of the dataset for this method is 

carried out in accordance with the value of the distribution 
of training, validation and testing data shown in table 4, 
with the method scheme illustrated in Figure 5 with a 
value of x = 10.

Table 4. Holdout Validation Method Dataset Resampling 
Label on 10% Dataset CXR-14

Method Data Training Data Validation Data Testing

Holdout 90-10 8.072 2.018 1.121

Holdout 80-20 7.175 1.793 2.242

Holdout 70-30 6.278 1.569 3.363

The training is carried out using the same Python 
programming as the 100% dataset training. The best results 
of modeling the three holdout validation methods at 10% 
of the ChestX-ray14 dataset are shown in table 4. The best 
mean AUROC value achieved is 0.9114 with Binary Cross 
Entropy (BCELoss) between the target and the output 
is 0.3238 which is obtained from the 90- division. 10. , 
determining the amount of training data, validation and 
schematic testing is shown in Figure 5. Graphic images of 
BCELoss on each batch of epoch validation are shown in 
Figure 6.

The results of model accuracy with three hold-out 
validation methods at 10% of the CXR-14 dataset are 
shown in table 5.

Figure 5. Schematic of determining the training data, 
validation and testing of the hold-out validation method

Figure 6. Graph BCELoss holdout validation method on 
10% of ChestX-ray14 dataset

Table 5. Holdout Validation Model Accuracy Results on 
10% Chestx-Ray 14 Dataset

Method AUROC 
mean BCELoss Epoch#

Holdout 90-10 0.9114 0.3238 29

Holdout 80-20 0.8992 0.3369 21

Holdout 70-30 0.8940 0.3110 17

The number of positive PE data labels and negative 
PE data labels on the 90-10 holdout validation method at 
10% of the ChestX-ray14 dataset is mentioned in table 6.

Table 6. Number of PE detection labels on Modified 90-10 
Holdout Validation Dataset on 10% Chestx-Ray 14 Dataset

Training Validation Testing Total

Label Positif 1.692 389 222 2.303

Label Negatif 6.380 6.380 1.629 899

Total 8.072 8.072 2.018 1.121

b. Application of the K-fold cross validation over 
holdout validation method on 10% of the 
ChestX-ray 14
Furthermore, the K-fold cross validation over holdout 

validation method is applied, with a value of k = 10 (10 
fold) based on the best 10% ChestX-ray14 dataset that 
has been obtained from the holdout validation method 
previously carried out, namely in the 90-10 division, 
determining the amount of data. training, validation and 
schematic testing are shown in Figure 7.

The results obtained from the modeling method of 
10 fold cross validation over holdout validation on 10% of 
the ChestX-ray14 dataset are shown in Table 7. The best 
mean AUROC produced was 0.9164, with a BCELoss 
value of 0.3167, which was achieved by the 2nd fold in 
the 42nd batch epoch validation of the 50 defined epoch 
batches. Graphic of BCELoss achievement in each epoch 
batch is shown in Figure 8.

http://journals.ums.ac.id/index.php/khif


DenseNet-CNN Architectural Model... 77

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Figure 7. Schematic of determining training data, validation 
and testing of the k-fold cross validation method

Figure 8. Graph of BCELoss k-fold validation method on 
10% of the ChestX-ray 14 dataset

Table 7. Modeling Accuracy of the K-Fold Cross Validation 
Method Over Holdout Validation on the CXR-14 10% 

Dataset

Method AUROC mean BCELoss Epoch#

Fold-1 0.9082 0.3225 27

Fold-2 0.9164 0.3167 42

Fold-3 0.9154 0.3274 24

Fold-4 0.9079 0.3484 19

Fold-5 0.9082 0.3226 18

Fold-6 0.9056 0.3249 25

Fold-7 0.9100 0.3291 17

Fold-8 0.9125 0.2894 22

Fold-9 0.9157 0.3190 25

Fold-10 0.9118 0.3319 26

c. AUROC analysis of 10% ChestX-ray 14 dataset
The area under receiver operating characteristics 

(AUROC) is a performance metric that you can use 
to evaluate a classification model. The analysis was to 

determine the sensitivity of the best model produced, 
namely the second fold of the k-fold cross validation 
method after holdout validation. The calculation of the 
mean AUROC is shown in Figure 9 and a slice of the 
output dataset is shown in Table 8.

Table 8.  AUROC calculation for a positive label and a 
negative label on the CXR-14 image

Line # AUROC Line # AUROC

1 0.9152 1 0.0244

2 0.8589 2 0.6133

3 0.8710 3 0.0576

… … … …

220 0.8219 1796 0.0054

221 0.2529 1797 0.0417

222 0.7647 1798 0.1170

Pieces of  
AUROC 

calculation 
data for 

detection of  
positive PE 

labels in 10% 
of  the CXR-

14 dataset

Pieces of  
AUROC 

calculation 
data for 

detection of  
positive PE 

labels in 10% 
of  the CXR-

14 dataset

Figure 9. The results of AUROC calculations on 10% of the 
ChestX-ray 14 dataset

From the calculation results, it is known that the 
sensitivity value has increased significantly so that it is 
above the cut-off value, with compensation there is an 
increase in the specificity value, which means that the 
resulting model has increased the likelihood of getting a 
true positive value when detecting a CXR-14 image with 
a PE label. positive is better, although there is a decrease 
in the confidence value of the negative PEA label training 
results.

With the results of the analysis obtained, it is 
concluded that the resulting model is valid, with a better 
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sensitivity value obtained from the 10% dataset of 71.493% 
and a specificity value of 10.011%. The comparison of the 
model test results is shown in table 9.

Table 9. Model Measurement Results

10% dataset on (k-fold 2)

Total Dataset 11.211

Data Training 8.072

Data Validation 2.018

Data Testing 1.121

AUROC mean 0.9164

Sensitivity 71.493%

Specificity 10.011%

The research continues to the next stage by bringing 
the best model file obtained, from modeling 80-20 holdout 
validation on 10% of the CXR-14 dataset as a model 
for testing CXR input in detecting PEA pathology by 
displaying a heat map to visualize areas on CXR-14, where 
disease is present, by using the Class Activation Mapping. 
Implementing this application can assist medical personnel 
in localizing the features they looking for. 

     

Figure 10. The result of heat map visualization on the 
resulting CNN Dense-Net model

3. Conclusion

The valid model was obtained in the 6th modification 
of the second k-fold with a mean AUROC value of 0.9164, 
a better sensitivity value was obtained from the 10% 
dataset of 71.493% and a specificity value of 10.011%. 
Optimizer parameters used are Adam’s optimizer, learning 
rate of 0.0001 and weight decay = 1e-5 and the loss used is 
binary cross entropy.

The denseNet-CNN model is also developed in the 
form of a heatmap visualization by localizing the features 
to be searched. The architecture is able to recognize 
predictive information with localization in the form of a 
heat map. This makes easier to detect and recognize PEA 
pathologic abnormalities.
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