
KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

60

Vol. 7 No. 1 | April 2021

Load Balancing Server and Homomorphic Encryption
in Internet of Things

Muhammad Hafiz Amrullah, Favian Dewanta*, Sussi
Fakultas Teknik Elektro

Universitas Telkom
Bandung, Indonesia

*favian@telkomuniversity.ac.id

Abstract-User demand for Internet of Things (IoT) services has been increasing. The growing number of user demand
can lead to an escalation of server workloads and threat of critical data theft. Consequently, a system is necessary to
balance the server load where the data is protected with encryption. In this study, we designed a system to share server
workloads using load balancing methods. The load balancing technique uses open-source web server software. The
system is equipped with data security using a homomorphic encryption algorithm from AES on the sender’s side.
The system embeds in an IoT telemedicine apparatus. During testing, we analyze the error requests that arrive at
each server for the HTTP GET and POST methods. We also evaluate the speed of data encryption and decryption.
The results showed that server load balancing reduces the number of error requests for the GET method by 97%.
Meanwhile, the number of error requests for the POST method decreases by 66.75%. Observations reveal that the
average homomorphic encryption speed, computation time, and decryption time are 15.66 ms, 764.18 µs, and 362.49
µs, respectively.

Keywords: load balancing, servers, requests, homomorphic encryption, AES algorithm

Article info: submitted February 3, 2021, revised April 6, 2021, accepted May 26, 2021

1.	 Introduction

The current industrial development encourages
the development and application of the Internet of
Things (IoT). The main objective of IoT technology is
to enable connected devices to communicate with each
other, exchange data, store data, and perform computing
complying with the user requirement. However, there are
several obstacles in IoT implementation, one of which is
the server load and data security on the server and database.
When the number of IoT users requesting service increases
and the server cannot handle the requests, the server will
receive too many requests that may cause the service to fail
to respond as expected [1].

To overcome these problems and improve server
performance, server load balancing and homomorphic
encryption systems can be implemented as a solution
in terms of uniform distribution of service loads and
data protection with fast computing. The system
implementation expectedly improves the reliability and
security of the IoT system. Server load balancing works
by considering the capacity of each server and distributing
workloads to several servers, which may reduce failures on

the servers [2]. Homomorphic encryption is a cryptographic
algorithm that allows (arithmetic) computing on the
ciphertext directly. It avoids the encryption process on
the plain text, which forces the decryption process, which
prolongs the steps. Homomorphic encryption result is the
same with encryption to plaintext [3]. It allows safe data
storage in the database in the form of ciphertext, and it
achieves a faster processing time compared to the use of
regular cryptographic algorithms.

In this study, the server design adopts an open-source
webserver to implement a load balancing system and apply
homomorphic encryption on a web server that runs on an
IoT-based telemedicine system. Testing parameters include
the error request received by the server and the length of
time the homomorphic encryption process runs on the
server.

2.	 Basic theory

a.	 Load Balancing
Load balancing is a technology to divide the traffic

load evenly on two or more connection lines in a balanced
way so that traffic does not experience congestion and can

http://journals.ums.ac.id/index.php/khif

Load Balancing Server... 61

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

run optimally. The target of load balancing is to maximize
throughput, reduce response time, and anticipate overload
on one connection line [4]. If the service users on the server
continue to grow and exceed the capacity available in the
network traffic path, the load balancer will distribute the
load from users evenly to all available servers. In addition,
load balancers can also evenly distribute loads of CPU,
hard disk, RAM, and other computing resources to get the
best performance from the server.

Figure 1. Typical load balancer configuration [4].

In this study, we implement a load balancer using
open-source software called NGINX that uses the Round
Robin algorithm which has its server or is separate from
other servers. The Round Robin algorithm is the simplest
algorithm and the most widely used algorithm for load
balancer devices. The Round Robin algorithm works
by distributing the load sequentially from one server to
another. The basic concept of the Round Robin algorithm
uses time-sharing, which simply processes the queue
(traffic or computation) in turn [5].

b.	 Advanced Encryption Standard (AES)
Advanced Encryption Standard (AES) is an

encryption algorithm with a symmetric key exchange and
applies a block cipher system that has a block length of
128 bits [6]. In cryptography, there are terms plain text
(plaintext) and ciphertext (ciphertext). Plaintext is the
initial information or data before the information or data
is encrypted, and ciphertext is information or data from
encrypted plain text. AES encryption uses a different
number of round keys for each type of block size, namely
a block length of 128 bits is 10 rounds, a block length of
192 bits is 12 rounds, and a block length of 256 bits is 14
rounds [7].

The type of AES block cipher used in this study is
AES Cipher Block Chaining (CBC) 256 bits as illustrated

in Figure 2. The advantage is that if the information or
data has the same plaintext, the encrypted information or
data cannot be repeated with the same encryption. This is
due to the use of an Initialization Vector (IV) which has a
different and random value for each data encryption.

CBC is the operating mode of the block cipher whose
IV length is the same as each plaintext block. The initial
process of encryption is to XOR plaintext with IV, and then
generate encrypted data (ciphertext) for plaintext blocks.
Then the resulting ciphertext will be used as IV again in
the next block. In this way, each ciphertext generated will
depend on each ciphertext in the previous block, so that
each encrypted data becomes unique [8].

Figure 2. CBC mode of operation [9].

c.	 Homomorphic encryption
Homomorphic encryption is a cryptographic

algorithm that makes it possible to compute encrypted
data without decrypting the data directly as the concept is
described briefly in Figure 3. . Homomorphic encryption
uses an encryption function with addition (addition) and
or multiplication (multiplication) operations on encrypted
data [10].

There are two types of homomorphic encryption,
namely Partially Homomorphic Encryption (PHE)
and Fully Homomorphic Encryption (FHE). PHE is
homomorphic encryption, which allows certain types of
operations to be used on the ciphertext. While FHE is a
homomorphic encryption, which allows two operations,
namely addition and multiplication of ciphertext.

In this research, a homomorphic FHE encryption
process is applied from AES encrypted data which is used
to calculate the average value of the data sent from the
sender. This homomorphic encryption process uses the
help of a python library called Pyfhel.

Figure 3. Homomorphic encryption concept [10].

http://journals.ums.ac.id/index.php/khif

Load Balancing Server...62

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Figure 4. Design of the system created.

3.	 Method

a.	 System planning
At this stage, the author designs a system from sensors

to the cloud server and its database as shown in Figure 4. The
author also analyzes the communication method between the
right elements in the system to be used in solving problems
based on information from datasheets, tutorials, and other
sources. others available.

Figure 4 shows the overall design of the telemedicine
system. The input data comes from the sensor. The data
sent by the microcontroller is the ciphertext data from
AES, the shared key to calculate the secret key, and the IV
generated from the microcontroller. Before encryption, the
microcontroller and server use the Diffie-Hellman algorithm
to exchange shared keys to calculate the symmetric secret-key
value to perform the AES encryption process and generate
the ciphertext. The ciphertext data is passed to the VPS via
the created web server API. The ciphertext data first passes
through the load balancer of the webserver which distributes
the data traffic to one of the two servers used. After that
decrypt the AES ciphertext data received by the server. After
the ciphertext is decrypted, the plaintext results are then
encrypted and computed using a homomorphic encryption
algorithm to calculate the average value per 100 data received
by server 1 and server 2, and the results of the average are
decrypted again using a homomorphic algorithm. Based
on the average value of the plaintext data, AES encryption
is performed again using the received key and IV. After the
AES encryption process is complete, the ciphertext data will
be saved to the MongoDB Atlas database.

Figure 5 is a system flow diagram starting with
the microcontroller performing the Diffie-Hellman key
exchange process. First, the process of making shared keys
X and IV, then the microcontroller will get the shared key Y
from the server and then the shared keys X and IV are sent
to the server. The microcontroller will generate the secret key
K from the shared key Y computation, and then perform
hashing to get the 256-bit key. After that, the AES algorithm

is used to encrypt the data and generate the ciphertext.
The AES ciphertext is sent to the cloud server. While on
the cloud server, the data first arrives at the load balancer
which is created using the Round Robin algorithm with the
initial process of scheduling all user requests that enter the
load balancer until all user requests are scheduled, the load
balancer will distribute user requests to one of the servers. If
the selected web server is overloaded, then the data requested
by the user is reset to be sent to another web server. After the
requested data is received by one of the servers, the request
data in the form of ciphertext is decrypted and computed
using homomorphic encryption. Once the computation is
complete, the data will be passed to the MongoDB Atlas
database for storage.

Figure 5. Process diagram flow of the system.

http://journals.ums.ac.id/index.php/khif

Load Balancing Server... 63

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

Figure 6. MongoDB database view.

Figure 6 is a display of ciphertext data storage in
MongoDB. The encrypted temperature data will be
stored in an array variable named “Data” as many as 100
encrypted data and from the 100 data the average value is
calculated using homomorphic encryption which is stored
in the “Average” variable in an encrypted fixed form.

b.	 Implementation
At this stage, the author makes the system after the

previous design has been completed.

c.	 Testing and Analysis Phase
At this stage, the system is tested to observe the

required data. The test is carried out by measuring QoS
and obtaining data during the homomorphic encryption
and decryption process.
The test is carried out using Apache Jmeter software, where
the testing scheme for error request parameters is carried
out by sending a different number of requests, namely
750, 900, 1200 and 1500 requests where all requests are
sent within 10 seconds. To test AES processing speed and
homomorphic processing, each experiment was performed
5 times by sending 100 requests within 100 seconds.

4.	 Result

Figure 7 and Figure 8 are the results of testing error
requests received by the server for the GET and POST
methods based on the number of different requests (ie
750, 900, 1200, and 1500 requests).

Figure 7. GET method request error chart.

Figure 8. POST method request error chart.

The result of the error request test on the GET
method shows that the error request results between server

http://journals.ums.ac.id/index.php/khif

Load Balancing Server...64

KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698XVol. 7 No. 2 | October 2021

1 and server 2 are almost the same. However, when using
server load balancing techniques, the number of error
requests received is reduced by an average of about 97%.
At the same time, the results of the POST method error
request testing show that the error request results between
server 1 and server 2 also show almost the same results.
However, on the load balancing server used, the number
of error requests received was reduced by an average of
about 66.75%. This proves that the load balancing server
implemented for the IoT telemedicine system is operating
properly.

Figure 9. Homomorphic process time chart.

Figure 9 is the result of testing the time of the
homomorphic encryption process which includes
3 processes, namely encryption, computation, and
homomorphic decryption. When testing the speed of
the homomorphic encryption and decryption process,
the encryption and decryption process was carried out
in 5 trials by sending 100 data to the server each time.
The results of the encryption processing time show that
the average homomorphic encryption process time is
15.66 milliseconds, the homomorphic computation
time average is 764.18 microseconds (0.76 milliseconds),
and the homomorphic decryption time average is
362.49 microseconds (0.36 milliseconds). The results
of the computational speed test on the homomorphic
cryptography algorithm show that the encryption process
takes the most time because the encryption process
in the algorithm uses a lot of computational overhead
in processing plaintext data to ciphertext. This reason
is sometimes a practical consideration not to apply
homomorphic encryption to databases that require real-
time data computation.

5.	 Conclusion

Server load balancing can reduce error requests
received by the server. The test results show that error
requests for the GET method are reduced by 97%, while
error requests for the POST method are reduced by
66.75%. Homomorphic encryption can be applied to the
server to calculate the average value of the data received by
the server on the IoT system. It proves that homomorphic
encryption runs well without errors. The average speed of

homomorphic encryption, computation, and decryption
is 15.66 ms, 764.18 s (0.76 ms), and 362.49 s (0.36 ms),
respectively, which suggests that encryption works as
expected.

Reference

[1]	 S. D. Riskiono and D. Pasha, “Analisis Metode
Load Balancing Dalam Meningkatkan Kinerja
Website E-Learning,” J. Teknoinfo, vol. 14, no. 1,
p. 22, 2020, doi: 10.33365/jti.v14i1.466.

[2]	 S. D. Riskiono, “Implementasi Metode Load
Balancing Dalam Mendukung Sistem Kluster
Server,” pp. 455–460, 2018, doi: 10.31227/osf.
io/9vuzx.

[3]	 Q. Wang, D. Zhou, and Y. Li, “Secure Outsourced
Calculations with Homomorphic Encryption,”
Adv. Comput. An Int. J., vol. 9, no. 6, pp. 01–14,
2018, doi: 10.5121/acij.2018.9601.

[4]	 A. Rahmatulloh and F. MSN, “Implementasi Load
Balancing Web Server menggunakan Haproxy dan
Sinkronisasi File pada Sistem Informasi Akademik
Universitas Siliwangi,” J. Nas. Teknol. dan Sist.
Inf., vol. 3, no. 2, pp. 241–248, 2017, doi:
10.25077/teknosi.v3i2.2017.241-248.

[5]	 F. Apriliansyah, I. Fitri, and A. Iskandar,
“Implementasi Load Balancing Pada Web Server
Menggunakan Nginx,” J. Teknol. dan Manaj.
Inform., vol. 6, no. 1, 2020, doi: 10.26905/jtmi.
v6i1.3792.

[6]	 X. W. Wu, E. H. Yang, and J. Wang, “Lightweight
security protocols for the Internet of Things,” IEEE
Int. Symp. Pers. Indoor Mob. Radio Commun.
PIMRC, vol. 2017-Octob, pp. 1–7, 2018, doi:
10.1109/PIMRC.2017.8292779.

[7]	 B. K. S. Rajaram and N. Krishna Prakash, “Secure
mqtt using aes for smart homes in iot network,”
Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 5s,
pp. 483–485, 2019.

[8]	 A. M. Al Naamany, A. Al Shidhani, and H.
Bourdoucen, “IEEE 802 . 11 Wireless LAN
Security Overview,” Ijcsns, vol. 6, no. 5, pp. 138–
156, 2006.

[9]	 M. E. Hameed, M. M. Ibrahim, N. A. Manap,
and M. L. Attiah, “Comparative study of several
operation modes of AES algorithm for encryption
ECG biomedical signal,” Int. J. Electr. Comput.
Eng., vol. 9, no. 6, pp. 4850–4859, 2019, doi:
10.11591/ijece.v9i6.pp4850-4859.

[10]	 Y. Alkady, F. Farouk, and R. Rizk, “Fully
Homomorphic Encryption with AES in Cloud
Computing Security,” Adv. Intell. Syst. Comput.,
vol. 845, pp. 370–382, 2019, doi: 10.1007/978-3-
319-99010-1_34.

http://journals.ums.ac.id/index.php/khif

