

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

Role of Finite State Automata in Transliterating Latin
Script into Javanese Script

Suprihatin1*, Imam Riadi2, Furizal3, Izzan Julda D.E Purwadi Putra4

*suprihatin@uad.ac.id
1,2Department of Information System

Universitas Ahmad Dahlan
Yogyakarta

3,4Master Program of Informatics
Universitas Ahmad Dahlan

Yogyakarta

Abstract- Writing a Javanese script is considered complicated writing for people who would learn it. The process of transliterating Latin into Javanese
script cannot be done directly because each alphabet is only sometimes represented by one Javanese script. Javanese script is not depicted by one or
more Latin letters, so if transliteration of Latin letters to Javanese letters is required, a parsing process is required. The rows of Javanese letters form a
ligature with specific rules, so parsing is also needed to correctly arrange the rows of Javanese letters. This study aims to design a program to facilitate
the transliteration of Latin script to Javanese script. Finite State Automata (FSA) is used to describe writing rules. This study is limited to lowercase
letters only. Capital letters and number symbols are not discussed in this study. The results of the study are in the form of a program design that can
transliterate Latin writing into Javanese. Experiments were carried out on as many as 4 structures of vowel-consonant variations. All syllabic structures
that include CV, CPV, CVC, and CPVC have been tried. The transliteration results show conformity with a 100% accuracy rate by the rules of writing
Javanese script. This research shows that the application of FSA can handle the transliteration of Latin letters into Javanese.

Keywords: FSA, Javanese Transliteration, Javanese Script, Parser

Article info: submitted January 1, 2020, revised February 2, 2020, accepted March 15, 2020

1. Introduction

Javanese script as a cultural symbol that needs to be preserved
[1]–[4]. In writing Javanese script is not simple [5], [6], because each
alphabet is not always represented with one Javanese script [7], [8].
Javanese characters are not represented by one or more Latin
letters, so if transliteration of Latin letters to Javanese letters is
needed, a parsing process is needed [9]. Parsing is also needed to

form Javanese ligature correctly. This study aims to design a
program to make it easier to transliterate Latin script to Javanese
script. Finite State Automata (FSA) is used to describe writing
rules [10]– [12]. There are 20 Javanese characters called carakan [8],
[13], [14], which can sound even if they are not given swara/vowel
support [15]. Clothing consists of 3 types, namely: vowels (a, i, u,
e, é, o) [16], special dead letters (r, ng, h), incoming / punchy letters
(r, y, l, w). Characters and sands will form ligatures. Figure 1
contains carakan character and couple character.

Figure 1. Carakan and Couple Characters

Jurnal Ilmu Komputer dan Informatika

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

 Couple characters are used if in front of them are consonants
that are not special consonants letters. For example, the word: abdi
of the letter b is a consonant is not special consonant so the letter

d is the couple character. Figure 2 here is a table of one of the
characters if it is sheathed.

Figure 2. Sandangan script

Lap is used to close words that end in a consonant, especially
at the end of a sentence.

Finite State Automata (FSA) can be used to transliterate
Javanese script into Latin [17], [18]. This study discusses how the
role of FSA helps in transliteration of Javanese script, namely:
input in the form of Javanese characters while output in the form
of syllables that can be read by the general public.

There are several previous studies that serve as a reference for
transliteration of characters. Mahastama researched on
transliteration from Javanese Latin into Javanese script utilizing a
list of consonant-vowels and a list of symbols simultaneously using
FSA to reduce the creation of complex Finite State Diagrams, the
accuracy results obtained in the average word transliteration of
96.44% [19]. This study has a drawback of error in the model input
which has not been fixed; Hence, it could not be applied in the
high-complexity model. Sanjani et al. conducted research on Latin
Balinese script to Balinese script with Noto Serif Balinese font
using finite state machine for transliteration, this paper was able to
convert text with accuration rate of 97.67% [20]; Unfortunately,
due to the new proposed, its variant is still limited in certain words.
Research conducted by Rachman et al. with the same method,
namely FSA using objects from 3 types of Madurese language,
namely Enja'-iyyeh, engghi-enten, and enggi-bunten obtained an
accuracy of 85% which was still below average accuracy because of
lack of corpus audio syllables of Madurese [21]. Using the same
method, Wolf-Sonkin et al. applied it to South Asian regional
languages with a result of 54% relative error rates by using
transliteration transducers with output readings from input bands.
This study requires additional integration with other modules that
can represent other deploying methods [22]. In addition, research
was conducted by Pratama et al. entitled "Design and Build an
Application for Transliteration of Latin Script into Sasak Script
using Rule-Based Algorithm using the android program". This
study used a rule-based algorithm with Sasak script objects with an
accuracy rate of 85.39% from 1650 test data. This research have
not conducted in reverse translation from aksara Sasak into aksara
Latin in widely-range data [23]. Karmani et al. conducted research
using transliteration tools from Arabic script to Latin script or vice
versa. TACA-TA is one of the tools developed. This study
compared the developed tool with the existing transliteration
machine, EiKtub. The results are more accurate TACA-TA with
an accuracy rate of ±82% in words and characters. Since its low
accuracy in longer words, it needs more evaluation with various
transliteration tools [24]. Rajapaksha et al. applied the
transliteration of Sri Lankan Sinhalese and Tamil scripts into
English. The study presents a hybrid approach using machine
learning and statistical machine translation for transliteration and
obtained the highest accuracy of 93.7 in Sinhalese to English

transliteration. This research should be developed with different
location names, organizational names, and designations for the
sake of improving quality [25]. Research conducted by Slamet et al.
entitled "Latin to Sundaese Script Conversion using Finite State
Automata Algorithm" used respondents to determine the level of
accuracy of the tools developed. 30 respondents using the Likert
technique as data processing, the results got a precision level of
79.8%. However, its precision level was far lower than the former
research that has been mentioned; Therefore, it is better to expand
with other methods in order to achieve high efficiency and
effectiveness [26]. Birawidya et al. used a finite state machine to
assign UNICODE to each character of Balinese script text by
checking the characters in each state. The usability scale of the
system given to 20 respondents received a score of 68 and was
considered to have qualified as a transliteration of Balinese script
text into Latin [27].

Starting from those points, this research would conduct the
evaluation model in order to gain high accuracy and efficiency with
different attempts. Thus, this study uses FSA to marshal and parse
sentences into syllables, regarding to the table of these syllables
transliterated into the Javanese script. Formally, Finite State
Automata (FSA) is defined as 5 tuples [28]–[30] (Q, ∑, δ, q0, F)
[31]–[34], in which Q is a finite set of states [35], ∑ is a finite set of
input symbols (Alphabet) [36], [37], q0 in Q is the initial state [38],

[39], F  Q is the set of finish states [37], [40], [41], and δ is a
transition function that maps Q x ∑ to Q [41]–[44]. An FSA can
be described as a directional graph whose points represent its states
[45], [46]. If a state q transitions to state p in input a, then a line
labeled A connects state q to state p in that graph.

2. Methods

The stages of the research are depicted in Figure 2. The input
is in the form of sentences and the output is in the form of
transition results. There are three parser processes, each assisted by
an FSA. Javanese doesn't have syllables that start with vowels, for
that the input needs to be normalized by adding the letter h to
syllables that start with vowels.

The parser 1 process normalizes input by adding the letter h to
syllables beginning with vowels and removing excess blanks. The
parser 2 process uses parser 1 output as input. Parser 2 functions
to convert normal input into a series of Javanese consonants (h, n,
c, r, k, d, t. s, w, l, p, dh, j, y, ny, m, g, b, th, ng), a row of Javanese
vowels (a, i, u, e, é, o) and blank.

The output of parser 2 is processed by parser 3 and the
transliteration table generates the transliteration. The study begins
by normalizing the lowercase input string, adding the letter h if a

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

word begins with a vowel, or two or more consecutive vowels [47],
[48]. The formation of normal strings using FSA and the parser
aims to conform to Javanese phonemes. The results of string
normalization will be processed to know consonants, vowels or

spaces (blanks). This recognition of consonants, vowels and spaces
also requires FSA and parsers. The next step is for the FSA and its
parser to recognize the structure of syllables and their
transliterations. The process step if depicted looks like Figure 3.

Figure 3. Transliteration Process Diagram

3. Result and Discussion

Javanese writing does not recognize words that begin with
vowels (such as: anda, orang), or words that contain 2 or more

consecutive vowels (such as: aan, taat). If it happens, you will add
the letter h in front of the vowel, (like anda → handa, orang →
horang) and like (aan → hahan, taat → tahat). Figure 4 here is the
FSA to normalize the input string.

Figure 4. FSA1 Normal Javanese Sentence

Formally, the FSA diagram 1 in Figure 4 is written as follows:
FSA = (Q, ∑, δ, q0, F).
Q = {0,1,2,3,4,5}
C = {‘h’,’n’,’c’,’r’,’k’,’d’,’t’,’s’,’w’,’p’,’j’,’y’,’m’,’g’,’b’}
V = {’a’,’i’,’u’,’e’,’é’,’o’}

∑ = C  V  {blank}
q0 = 0

Table 1. FSA 1 Transition Function

∑ C V
blank 

q ‘h' ‘n' ‘c' ‘r' ‘k' ‘d' ‘t' ‘s' ‘w' ‘l' ‘p' ‘j' ‘y' ‘m' ‘g' ‘b' ‘a' ‘i' ‘u' ‘e' ‘é' ‘o’

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 2

1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 2

2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 3

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 2

5 0

F = {1, 2, 4, 5}

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

Figure 4 is also useful for removing excessive blanks so that
between two words there is only one blank. Phonemes in Javanese
there are 6 vowels (a, i, u, e, é, o) and 20 consonants namely h, n,

c, r, k, d, s, w, l, p, dh, j, y, ny, m, g, b, th, ng. FSA for recognizing
phonemes and spaces, as in Figure 5.

Figure 5. FSA2 Introduction to Javanese Phonemes and Blanks

Formally, the FSA diagram 2 in Figure 5 is written as follows:
FSA = (Q, ∑, δ, q0, F).
Q = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27}
∑ = {‘h’,’n’,’c’,’r’,’k’,’d’,’t’,’s’,’w’,’p’,’j’,’y’,’m’,’g’,’b’, ’a’,’i’,’u’,’e’,’é’,’o’}
q0 = 0

Table 2. FSA 2 Transition Function

∑
q

‘h' ‘n' ‘c' ‘r' ‘k' ‘d' ‘t' ‘s' ‘w' ‘l' ‘p' ‘j' ‘y' ‘m' ‘g' ‘b' ‘a' ‘i' ‘u' ‘e' ‘é' ‘o’ blank

0 1 2 3 4 5 6 7 8 9 10 11 13 14 16 17 18 21 22 23 24 25 26 27

2 15 20

6 12

7 19

F = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27}

The two circles indicate the final status of phoneme
recognition. Figure 5 is FSA 2 consisting of 27 finish states which
show the structure of Javanese phonemes. Final states 1 through
20 indicate consonant phonemes, statuses 21 through 26 indicate
vowels, and 27 blanks.

The syllabic structure pattern consists of 4 namely: CV
(example: pari, tari), CVC (example: muntah, tindak), CCV
(example: dwi), CCVC (example: kram, tyas). The second of the 2
consecutive consonants is called the possesser consonant
consisting of: r, w, l, y. To simplify further, the syllable structure is
CV, CVC, CPV, CPVC. The FSA image looks like Figure 6.

Figure 6. FSA3 Javanese Syllabic Structure

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

Formally, the FSA diagram 3 in Figure 6 is written as follows:
FSA = (Q, ∑, δ, q0, F).
Q = {0,1,2,3,4,5,6,7,8}
C = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}
V = {21,22,23,24,25,26}
P = {4, 8, 14}

∑ = C  V  P  {blank}
q0 = 0

Table 3. FSA 3 Transition Function

∑ C V blank


 q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1

1 4 4 4 4 2 2 2 2 2 2

2 3 7

3 4 4 4 4 1 1 1 1 1 1

4 5 5 5 5 5 5

5 6 8

6 4 4 4 4 1 1 1 1 1 1

7 0

8 0

F = {2, 3, 5, 6}

 The final status consists of four statuses with respect to four
kinds of Javanese syllabic structures. Status 2 pertains to the CV
pattern, status 3: CVC, status 5: CPV, and status 6: CPVC. The
three FSA images in Figures 4-6 will form three algorithms, while
the algorithms are as follows:

1. Normal Algorithm of Javanese Sentences

 The Javanese Normal Sentence algorithm is useful for
converting general sentences into standard/normal sentences that
can be transliterated into Javanese script. Figure 4 FSA1 can be
created Algorithm 1 as follows:

1 function Parser1(s: String): string;
2 var i, N,q: integer;
3 lw, helper: string;
4 function d (state: integer; k: char): integer;
5 const
6 vowel= ['a','e','i','o','u','é'];
7 blank = ' ';
8 var q: integer;
9 begin

10 q  0;
11 case state of

12 0: if k in vowel then q  1 else

13 if k = blank then q  2 else q  4;

14 1: if k in vowel then q  1 else

15 if k = blank then q  2 else q  4;

16 2: if k in vowel then q  1 else

17 if k = blank then q  3 else q  4;

18 3: if k in vowel then q 1 else

19 if k = blank then q  3 else q  4;

20 4: if k in vowel then q  5 else

21 if k = blank then q  2 else q  4;
22 end;

23 result  q;
24 end;
25 begin

26 helper  ''; lw  LowerCase(s);

27 N  length(s);

28 q  0;

29 for i: = 1 to N do
30 begin

31 q  d(qlw[i]);
32 case q of

33 1: helper  helper + 'h' + lw[i];

34 2: helper  helper + lw[i];

35 4: helper  helper + lw[i];

36 5: begin helper  helper + lw[i]; q  0 ; end;
37 end;
38 end;

39 result  helper;
40 end;

Lines 4 through 24 are FSA Pseudocode 1. Line 26 is to make the
sentence lowercase. On line 33, if state 1 is input in the form of a
vowel so that the letter h is added in front of the vowel. If state 2
(line 34) or state 4 (line 35) then the result is equal to the input.
Meanwhile, if state 5 (line 36) then the result is equal to the input
value and the state returns to state 0. Then, if the state is 3 then no
action means removing the blank input.

2. Phoneme Parser Algorithm

The Phoneme Parser algorithm is useful for converting normal
Javanese sentences into phoneme tokens. Figure 5 FSA2 can be
created Algorithm 2 as follows:

1 procedure Parser2(KalNor: String);
2 var
3 kal : string;
4 q,i, lihat,len : integer;
5
6 function d(state:integer;k:char):integer;
7 var q: integer;
8 begin
9 case state of
10 0: if k = 'h' then q  1 else
11 if k = 'n' then q  2 else
12 if k = 'c' then q  3 else
13 if k = 'r' then q  4 else
14 if k = 'k' then q  5 else
15 if k = 'd' then q  6 else
16 if k = 't' then q  7 else

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

17 if k = 's' then q  8 else
18 if k = 'w' then q  9 else
19 if k = 'l' then q  10 else
20 if k = 'p' then q  11 else
21 if k = 'j' then q  13 else
22 if k = 'y' then q  14 else
23 if k = 'm' then q  16 else
24 if k = 'g' then q  17 else
25 if k = 'b' then q  18 else
26 if k = 'a' then q  21 else
27 if k = 'i' then q  22 else
28 if k = 'u' then q  23 else
29 if k = 'e' then q  24 else
30 if k = 'o' then q  25 else
31 if k = 'é' then q  26 else
32 if k = ' ' then q  27 else q err;
33 2: if k = 'y' then q  15 else
34 if k = 'g' then q  20 else q  err;
35 6: if k = 'h' then q  12 else q  err;
36 7: if k = 'h' then q  19 else q  err;
37 27: if k = ' ' then q  27 else q  err;
38 else q  err;
39 end;
40 result  q;
41 end;
42
43 function lookhead(p,i:integer):integer;
44 var look : integer ;
45 begin
46 if i > len then look  err else
47 look  d(p,kal[i]);
48 Lookhead  look;
49 end;
50
51 begin
52 kal := Normaljawa(KalNor);
53 len  length(kal);
54 q := 0; i  1; JumTok  0;
55 while (i <= len) do
56 begin
57 q  d(q,kal[i]);
58 if q = err then
59 begin
60 q := 0;
61 end else
62 begin
63 lihat  lookhead(q,i+1);
64 if lihat= err then
65 begin
66 JumTok  JumTok + 1;
67 Tok[JumTok]  q;
68 q := 0;
69 end;
70 end;
71 i  i + 1;
72 end;
73 end;

 FSA2 is embodied in the functions on line 6 through line 41.
The lookhead function on lines 43 through 49 is useful for seeing
the next state with the next input. The Tok data structure is a global
variable integer array that serves to store a series of state created by
the second FSA. On lines 63 through 69, if the next state is error
then the state is stored in the Tok variable line 67.

3. Syllable Parser Algorithm

The Syllable Parser algorithm is useful converting phoneme
token strings into syllables to transliterate. Figure 6 FSA3 can be
created Algorithm 3 as follows:

1 procedure Parser3;
2 var
3 q,i, lihat : integer;
4 save2,save5 : string;
5
6 function d2(state, k: integer): integer;
7 const
8 Con = [1..20];
9 Poss = [4,9,10,14];
10 Vow = [21..26];
11 var q: integer;
12 begin
13 case state of
14 0: if k in Con then q  1 else q  err;
15 1: if k in Vow then q  2 else
16 if k in Poss then q  4 else q  err;
17 2: if k in Con then q  3 else
18 if k = 27 then q  7 else q  err;
19 3: if k in Vow then q  1 else
20 if k in Poss then q  4 else q  err;
21 4: if k in Vow then q  5 else q  err;
22 5: if k in Con then q  6 else
23 if k = 27 then q  8 else q  err;
24 6: if k in Vow then q  1 else
25 if k in Poss then q  4 else q  err;
26 else q  err;
27 end;
28 Result  q;

29 end;
30 function lookhead(p,i:integer):integer;
31 var look : integer ;
32 begin
33 if i > jumtok then look  err else
34 look  d2(p,Tok[i]);
35 lookhead  look;
36 end;
37 begin
38 q  0; i  1; s '';
39 couple  false;
40 while (i <= jumtok) do
41 begin
42 q  d2(q,tok[i]);
43 case q of
44 100 : q := 0;
45 1 : begin
46 one  tok[i]; // dapat konsonan
47 if(couple) then one  tok[i] + 20 ;
48 couple  false ;
49 end;
50 4 : begin
51 four  tok[i]; // dapat panjingan
52 end;
53 2: begin
54 two  tok[i];
55 save2  trans(2);
56 if i = jumtok then s  s + save2;
57 end;
58 5: begin
59 five  tok[i];
60 save5  trans(5);
61 if i = jumtok then s  s + save5;
62 end;
63 3: begin
64 three  tok[i];
65 lihat  lookhead(q,i+1);
66 case lihat of
67 1,4: begin
68 s  s + save2;
69 q  1;
70 one  tok[i];
71 end
72 else
73 begin
74 s s + trans(3);
75 if (three in pati) then couple  false
76 else couple  true ;
77 q  0;
78 init;
79 end;
80 end;
81 end;
82 6: begin
83 enam  tok[i];
84 lihat  lookhead(q,i+1);
85 case lihat of
86 1,4: begin
87 s  s + save5;
88 q  1;
89 one  tok[i];
90 end
91 else
92 begin
93 s  s + trans(6) ;
94 if (enam in pati) then couple  false
95 else couple  true ;
96 q  0;
97 init;
98 end;
99 end;
100 end;
101 7: begin
102 s  s + save2 ;
103 q := 0; couple  false;
104 init;
105 end;
106 8: begin
107 s  s + save5 ;
108 q  0; couple  false;
109 init;
110 end;
111 end;
112 i  i + 1;
113 end;
114 tulispangku;
115 end;

Con is the set of consonant phonemes numbered 1 through
20. Vow is the set of vowel phonemes that are phoneme numbers:
21 to 25, Poss is the phoneme of Possesser which is numbered 4,
9, 10, and 14. FSA3 is embodied in functions d2 line 6 through line
29. The lookhead function on lines 30 to 36 is useful for seeing
the next state with the next input. The Tok data structure is an
integer array global variable serving as input by the third FSA.

S is a global variable to save the transliteration results. The
variable one means to save the input from a state to state 1.
Variable two means saving input from a state to state 2. So are
three, four, and five. Line 47 of the variable couple to indicate if
the input is a pair, then list the pairs simply by adding the number

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

20 for transliteration needs. Line 55 variable save2 to store the
result of transliteration at state 2, line 56 if the last input then save2
goes to global variable s. So do lines 60 and 61, if the last input
then save5 goes into the global variable s.

In lines 67 through 70 of state 3, if the next state is 2 or 4, save2
is added to the variable s. If otherwise, it means stop at state 3, then
add the variable s with the transliteration of state 3 line number 74.
Line 75, the pair flag is false if the consonants in starch (r, h, ng).
Otherwise, give the value true. Likewise, state 6 on line 82 through
line 100.

State 7, line 101 through line 105, then the state ends in state 2
to store the transliteration result of state 2. Likewise, state 8, line
196 until 111 is a transliteration of state 5. False pair flags end in
state 7 or 8. The init procedure is for initialization of variables one,
two, six with a value of 0. The procedure is to add the Lap script if
the consonant ending is not consonant special. This stage will
simulate the results of the transliteration process with several
inputs, the first parser, the second parser and the third parser to
get the transliteration. Table 4 is an example of the transliteration.

Table 4. Examples of Transliteration Results

No Structure Input Normal Javanese Javanese phonemes Transliteration Results

1

CV

ma
TI

Lowercase: ma ti State: 16->21->27->7->22 State: 0->1->2->7->1->2

State: 0->4->5->2->3->3->3-
>3->3->4->5

Phonemes: m->a-> ->t->i

Result:
Normal Results: ma ti

2

CPV

Kroco

Lowercase: kroco State: 5->4->25->3->25 State:0->1->4->5->6->2

State: 0->4->4->5->4->5 Phonemes: k->r->o->c->o

Result:
Normal Results: kroco

3

CVC

Konco
lawas

Lowercase: konco
lawas

State: 5->25->2->3->25->27-
>10->21->9->21->8

State:0->1->2->3->1->2->7->1->2->3->2->3

State: 0->4->5->4->4->5->2-
>3->3->3->3->3->3->3->3-
>3->3->3->3->4->5->4->5-

>4

Phonemes: k->o->n->c->o-> ->l-
>a->w->a->s

Result:

Normal Results: konco lawas

4

CPVC

Kripik
anget

Lowercase: kripik anget
State: 5->4->22->11->22->5-

>27->1->21->20->24->7
State:0->1->4->5->6->2->3->100->1->2->3->2->3

State: 0->4->4->5->4->5->4-
>2->1->4->4->5->4

Phonemes: k->r->i->p->i->k-> -
>h->a->ng->e->t

Result:
 Normal Results: kripik hanget

4. Conclusion

Based on the results of the experiment, the algorithm has been
able to transliterate Latin script to Javanese script. Experiments
were carried out as many as 4 structures of vowel consonant
variations. All syllabic structures that include CV, CPV, CVC, and
CPVC have been tested. The transliteration results show
conformity with a 100% accuracy rate in accordance with the rules
of writing Javanese script. This research shows that the application
of FSA can handle the transliteration of Latin letters into Javanese.

Reference

[1] F. K. Sari, “The Local Wisdom in Javanese Thinking Culture
within Hanacaraka Philosophy,” Diksi, vol. 28, no. 1, Mar. 2020,
doi: 10.21831/diksi.v28i1.31960.

[2] P. Ardhianto, W.-H. Hsieh, S. A. Mahanaim, and C.-H. Chen,
“Cross-Cultural Concepts in Cultural Product Design,” in
Proceedings of the 3rd International Conference on Arts and Design
Education (ICADE 2020), Paris, France: Atlantis Press, 2021.
doi: 10.2991/assehr.k.210203.031.

[3] P. Bintoro and A. Harjoko, “Lampung Script Recognition Using
Convolutional Neural Network,” IJCCS (Indonesian Journal of

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

Computing and Cybernetics Systems), vol. 16, no. 1, p. 23, Jan. 2022,
doi: 10.22146/ijccs.70041.

[4] C. A. Purnomo, S. A. Mahanaim, F. Riva Lo, V. Ardaniah, and
P. Ardhianto, “Visual Language of Javanese Script on Shoe

Design as Cultural Identity,” Gelar : Jurnal Seni Budaya, vol. 19,
no. 2, pp. 105–113, Dec. 2021, doi: 10.33153/glr.v19i2.3951.

[5] G. N. Adli Kesaulya, A. Fariza, and T. Karlita, “Javanese Script
Text Image Recognition Using Convolutional Neural
Networks,” in 2022 International Electronics Symposium (IES),
IEEE, Aug. 2022, pp. 534–539. doi:
10.1109/IES55876.2022.9888527.

[6] A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto,
and D. R. I. M. Setiadi, “Javanese Script Recognition based on
Metric, Eccentricity and Local Binary Pattern,” in 2021
International Seminar on Application for Technology of Information and
Communication (iSemantic), IEEE, Sep. 2021, pp. 118–121. doi:
10.1109/iSemantic52711.2021.9573232.

[7] A. A. Nggofur and S. Dwijonagoro, “Improving Javanese Letter
Reading Skill through the Iqro Script Method,” International
Journal Corner of Educational Research, vol. 1, no. 2, pp. 69–77, Oct.
2022, doi: 10.54012/ijcer.v1i2.95.

[8] A. Susanto, C. Atika Sari, I. U. W. Mulyono, and M. Doheir,
“Histogram of Gradient in K-Nearest Neighbor for Javanese
Alphabet Classification,” Scientific Journal of Informatics, vol. 8, no.
2, pp. 289–296, Nov. 2021, doi: 10.15294/sji.v8i2.30788.

[9] A. R. Widiarti and R. Pulungan, “A method for solving scriptio
continua in Javanese manuscript transliteration,” Heliyon, vol. 6,
no. 4, p. e03827, Apr. 2020, doi: 10.1016/j.heliyon.2020.e03827.

[10] A. Yuniar Rahman, F. Wanditya Setiawan, A. Lia Hananto, and
B. Setyawan, “Modeling financial statements for small and
medium businesses in Worm-Made Fertilizer Using Finite State
Automata (FSA),” J Phys Conf Ser, vol. 1908, no. 1, p. 012025,
Jun. 2021, doi: 10.1088/1742-6596/1908/1/012025.

[11] E. Fulop and N. Pataki, “Symbolic Execution with Finite State
Automata,” in 2019 IEEE 15th International Scientific Conference on
Informatics, IEEE, Nov. 2019, pp. 000293–000298. doi:
10.1109/Informatics47936.2019.9119287.

[12] I. Lobzhanidze, “Computational Modeling,” in Finite-State
Computational Morphology, Cham: Springer International
Publishing, 2022, pp. 117–166. doi: 10.1007/978-3-030-90248-
3_3.

[13] D. Lisufiana, M. Khumaedi, and T. Supriyatno, “The
Developing of Mengalihaksarakan Serat Wulangreh Pupuh
Gambuh Assessment Instruments for Eighth Class,” in
Proceedings of the 6th International Conference on Science, Education and
Technology (ISET 2020), 2022. doi: 10.2991/assehr.k.211125.063.

[14] I. Prihandi, I. Ranggadara, S. Dwiasnati, Y. S. Sari, and
Suhendra, “Implementation of Backpropagation Method for
Identified Javanese Scripts,” J Phys Conf Ser, vol. 1477, no. 3, p.
032020, Mar. 2020, doi: 10.1088/1742-6596/1477/3/032020.

[15] N. Nabilah and F. Nikmah, “The Relationship of Aksara Jawa
as Local Folklore with Moderate and Progressive Islamic
Education,” Annual International Conference on Islamic Education for
Students, vol. 1, no. 1, Jun. 2022, doi: 10.18326/aicoies.v1i1.257.

[16] H. I. Sa’adah and B. Setiawan, “Simbol Bunyi Vokal Huruf
Hijaiyyah Dan Huruf Carakan Jawa (Studi Analisis Linguistik
Fonologi),” Al-Fakkaar, vol. 1, no. 1, pp. 101–122, 2020.

[17] Suprihatin, “Penerapan Finite State Automata dalam
Mengalihaksarakan Tulisan Aksara Jawa ke Tulisan Huruf Latin,
[Finite State Automata for Converting Javanese Letters to Latin
Letters],” Master Thesis, Universitas Gadjah Mada, Yogyakarta,
2003.

[18] Y. Zhou, F. Huang, and H. Chen, “Combining probability
models and web mining models: A framework for proper name

transliteration,” Information Technology and Management, vol. 9, no.
2, pp. 91–103, 2008, doi: 10.1007/s10799-007-0031-9.

[19] A. W. Mahastama, “Model Berbasis Aturan untuk Transliterasi
Bahasa Jawa dengan Aksara Latin ke Aksara Jawa,” Jurnal Buana
Informatika, vol. 13, no. 02, pp. 146–154, 2022, doi:
10.24002/jbi.v13i02.6526.

[20] D. A. P. P. Sanjani, G. Indrawan, and I. G. A. Gunadi,
“Pengembangan Metode Pemisahan Suku Kata Untuk
Transliterasi Teks Latin Ke Bali Berbasis Finite State Machine
Dengan Huruf Noto Serif Bali,” Jurnal Ilmu Komputer Indonesia
(JIK), vol. 6, no. November, pp. 3–6, 2021, [Online]. Available:
https://doi.org/10.23887/jik.v6i2.3659

[21] F. H. Rachman, Qudsiyah, and F. Solihin, “Finite State
Automata Approach for Text to Speech Translation System in
Indonesian-Madurese Language,” J Phys Conf Ser, vol. 1569, no.
2, pp. 0–7, 2020, doi: 10.1088/1742-6596/1569/2/022091.

[22] L. Wolf-Sonkin, V. Schogol, B. Roark, and M. Riley, “Latin
script keyboards for South Asian languages with finite-state
normalization,” FSMNLP 2019 - 14th International Conference on
Finite-State Methods and Natural Language Processing, Proceedings, pp.
108–117, 2019, doi: 10.18653/v1/w19-3114.

[23] P. W. Pratama, A. Aranta, and F. Bimantoro, “Rancang Bangun
Aplikasi Transliterasi Aksara Latin menjadi Aksara Sasak
Menggunakan Algoritma Rule Based Berbasis Android,” Jurnal
Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 3, no.
2, pp. 232–243, 2021.

[24] N. Karmani, H. Soussou, and A. Alimi, “Tunisian Arabic chat
alphabet transliteration using probabilistic finite state
transducers,” International Arab Journal of Information Technology,
vol. 16, no. 2, pp. 295–303, 2019.

[25] H. S. Priyadarshani, M. D. W. Rajapaksha, M. M. S. P.
Ranasinghe, K. Sarveswaran, and G. V. Dias, “Statistical
Machine Learning for Transliteration: Transliterating names
between Sinhala, Tamil and English,” Proceedings of the 2019
International Conference on Asian Language Processing, IALP 2019,
pp. 244–249, 2019, doi: 10.1109/IALP48816.2019.9037651.

[26] C. Slamet, Y. A. Gerhana, D. S. Maylawati, M. A. Ramdhani,
and N. Z. Silmi, “Latin to Sundanese script conversion using
Finite State automata algorithm,” IOP Conf Ser Mater Sci Eng, vol.
434, no. 1, pp. 0–10, 2018, doi: 10.1088/1757-
899X/434/1/012063.

[27] C. O. Birawidya,, vol. 7, pp. 41–46, 2022.
[28] M. M. Sulaiman, R. Andrianto, and M. A. Yulianto, “Mobile

Learning Application for Language and Automata Theory using
Android-based,” Jurnal Online Informatika, vol. 5, no. 2, p. 176,
Dec. 2020, doi: 10.15575/join.v5i2.630.

[29] K. Kumar, “Design of vending machine through
implementation of visual automata simulator and finite state
machine,” International Journal of Research in Circuits, Devices and
Systems, vol. 2, no. 2, pp. 60–64, 2021.

[30] J. Mantik, H. B. Kusnawan, W. Gata, and L. Kurniawati,
“Simulation Signature-Based Carving Raster Image Using Finite
State Automata,” Jurnal Mantik, vol. 6, no. 1, pp. 202–209, 2022.

[31] T. Hari Wicaksono, F. Dwiki Amrizal, H. Atun Mumtahana, and
J. Setia Budi No, “Pemodelan Vending Machine dengan Metode
FSA (Finite State Automata),” DoubleClick: Journal of Computer
and Information Technology, vol. 2, no. 2, pp. 66–69, 2019, [Online].
Available: http://e-
journal.unipma.ac.id/index.php/doubleclick/article/view/390
1

[32] C. Fikri, W. Gata, B. Pratama, K. S. Parthama, and T. Haryanti,
“Penerapan Finite State Automata Pada DesainVending
Machine Alat Tulis Sekolah,” Jurnal Sistem Komputer TGD, vol. 1,
no. 6, pp. 296–302, 2022, [Online]. Available:
https://ojs.trigunadharma.ac.id/index.php/jskom

http://journals.ums.ac.id/index.php/khif/

Vol. KHAZANAH INFORMATIKA | ISSN: 2621-038X, Online ISSN: 2477-698X

[33] B. Asrun, “Konsep Finite State Automata dalam Proses
Pendaftaran Ujian Skripsi di Fakultas Teknik Komputer
UNCP,” Jurnal Ilmiah Information Technology d’Computare, vol. 10,
pp. 5–9, 2020.

[34] B. Chen, K. Leahy, A. Jones, and M. Hale, “Differential privacy
for symbolic systems with application to Markov Chains,”
Automatica, vol. 152, p. 110908, Jun. 2023, doi:
10.1016/j.automatica.2023.110908.

[35] E. Šestáková, O. Guth, and J. Janoušek, “Inexact tree pattern
matching with 1-degree edit distance using finite automata,”
Discrete Appl Math (1979), vol. 330, pp. 78–97, May 2023, doi:
10.1016/j.dam.2023.01.003.

[36] P. Samuel, S. Subbaiyan, B. Balusamy, S. Doraikannan, and A.
H. Gandomi, “A Technical Survey on Intelligent Optimization
Grouping Algorithms for Finite State Automata in Deep Packet
Inspection,” Archives of Computational Methods in Engineering, vol.
28, no. 3, pp. 1371–1396, May 2021, doi: 10.1007/s11831-020-
09419-z.

[37] F. James, I. Ray, and D. Medhi, “Situational Awareness for
Smart Home IoT Security via Finite State Automata Based
Attack Modeling,” in 2021 Third IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications (TPS-
ISA), IEEE, Dec. 2021, pp. 61–69. doi:
10.1109/TPSISA52974.2021.00007.

[38] V. F. Hakim, W. Gata, S. Rahayu, H. Setiawan, and H. B.
Novitasari, “Implementation of Finite State Automata in
Graphic Design Class Process Online,” JUSIKOM PRIMA
(Jurnal Sistem Informasi dan Ilmu Komputer Prima), vol. 6, no. 1,
2022.

[39] Z. Yang et al., “FSAFlow: Lightweight and Fast Dynamic Path
Tracking and Control for Privacy Protection on Android Using
Hybrid Analysis with State-Reduction Strategy,” in 2022 IEEE
Symposium on Security and Privacy (SP), IEEE, May 2022, pp. 2114–
2129. doi: 10.1109/SP46214.2022.9833764.

[40] N. Lediwara, H. Saragih, R. A. G. Gultom, E. Mukmin, G.
Rahmad Zuwa, and R. Hadi Fajri, “Finite State Automata On
The Administrative Selection System Of New Student
Admission in Universitas Pertahanan Republik Indonesia,” in
2022 International Conference on Advanced Computer Science and

Information Systems (ICACSIS), IEEE, Oct. 2022, pp. 95–98. doi:
10.1109/ICACSIS56558.2022.9923514.

[41] S. Chakraborty, R. Grossi, K. Sadakane, and S. R. Satti,
“Succinct representation for (non)deterministic finite
automata,” J Comput Syst Sci, vol. 131, pp. 1–12, 2023, doi:
10.1016/j.jcss.2022.07.002.

[42] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to
automata theory, languages, and computation, 2nd edition,”
ACM SIGACT News, vol. 32, no. 1, pp. 60–65, Mar. 2001, doi:
10.1145/568438.568455.

[43] H. Djidjev, “Automaton-based methodology for implementing
optimization constraints for quantum annealing,” in Proceedings
of the 17th ACM International Conference on Computing Frontiers, New
York, NY, USA: ACM, May 2020, pp. 118–125. doi:
10.1145/3387902.3392619.

[44] T. Andriani and Pristiwanto, “Transducer Function In Vending

Machine Simulation Design,” Instal : Jurnal Komputer, vol. 11, no.
01, pp. 26–34, Feb. 2019, doi:
10.54209/jurnalkomputer.v11i01.5.

[45] I. Chraibi Kaadoud, L. Fahed, T. Tian, Y. Haralambous, and P.
Lenca, “Automata-based Explainable Representation for a
Complex System of Multivariate Times Series,” in Proceedings of
the 14th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management, SCITEPRESS -
Science and Technology Publications, 2022, pp. 170–179. doi:
10.5220/0011363400003335.

[46] M. Erkurt, “Dynamics and Complexity of Computrons,”
Entropy, vol. 22, no. 2, p. 150, Jan. 2020, doi:
10.3390/e22020150.

[47] A. Mallik and A. Khetarpal, “Turing Machine based Syllable
Splitter,” in 2021 Fourth International Conference on Computational
Intelligence and Communication Technologies (CCICT), IEEE, Jul.
2021, pp. 87–90. doi: 10.1109/CCICT53244.2021.00028.

[48] H. Haryanto and Aripin, “A Finite State Machine Model to
Determine Syllables of Indonesian Text,” in 2019 1st
International Conference on Cybernetics and Intelligent System (ICORIS),
IEEE, Aug. 2019, pp. 238–241. doi:
10.1109/ICORIS.2019.8874889.

http://journals.ums.ac.id/index.php/khif/

