Medical External Wound Image Classification Using Support Vector Machine Technique

Syifa'ah Setya Mawarni(1*), Murinto Murinto(2), Sunardi Sunardi(3),

(1) Universitas Ahmad Dahlan
(2) Universitas Ahmad Dahlan
(3) Universitas Ahmad Dahlan
(*) Corresponding Author


Diagnosis is an activity that refers to the examination of something. Diagnosis is often associated with medical activities as a determinant of a person's condition, in the health sector diagnosis means a procedure performed by a doctor to determine a patient's condition. Unfortunately, it is rare to diagnose disease using an object wound, whereas if the wound is not treated immediately it can lead to more serious illnesses such as ulcers and tetanus or in some cases it can cause infection which then becomes a complication, in the worst case amputation occurs. The skin protects the body from various threats, the skin is also the first fortress for the body. Before implementing a prototype external wound diagnosis, it is necessary to test the accuracy of the algorithm to be used. The algorithm that can be used for diagnosis or classification is the Support Vector Machine or SVM which in the process goes through 3 stages, namely data collection, preprocessing, and classification. This research obtained the results of feature extraction on the wound image test data using GLCM with a contrast value of 0.0082, a correlation value of 0.9769, an energy value of 0.6391, and a homogeneity value of 0.9959 as well as the accuracy of using the SVM algorithm which was measured using a confusion matrix to get an accuracy value of 96.39%, 93.06% precision, recall 92.85%, and F1-score 92.58%. The results of the accuracy of the classification of external wound images using the SVM algorithm are 92.85%.


Support Vector Machine; External Wound; Confusion Matrix.

Full Text:



D. Mauli, “Tanggung Jawab Hukum Dokter Terhadap Kesalahan Diagnosis Penyakit Kepada Pasien,” Cepalo, vol. 2, no. 1, pp. 33, Sep 2019, doi: 10.25041/cepalo.v2no1.1760.

Supriyono, Erida, and Fadila, “Sistem Pakar Penegakan Diagnosa Penyakit Hipertensi Dengan Inferensi Forward Chaining Menggunakan Metode Support Vector Machine (SVM),” Jurnal Kesehatan Medika Udayana, vol. 8, no. 2, pp. 207–221, 2022.

U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (SVM) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh” Scientific Student Journal for Information, Technology and Science, vol. 3, no. 2, pp. 254–259, 2022.

M. R. Andryan, M. Fajri, & N. Sulistyowati, "Komparasi Kinerja Algoritma Xgboost dan Algoritma Support Vector Machine (SVM) untuk Diagnosis Penyakit Kanker Payudara," JIKO (Jurnal Informatika dan Komputer), vol. 6, no. 1, pp. 1-5, 2022.

N. G. Ramadhan, “Comparative Analysis of ADASYN-SVM and SMOTE-SVM Methods on the Detection of Type 2 Diabetes Mellitus,” Scientific Journal of Informatics, vol. 8, no. 2, pp. 276–282, Nov 2021, doi: 10.15294/sji.v8i2.32484.

H. Mu’jizah and D. C. R. Novitasari, “Comparison of the Histogram of Oriented Gradient, GLCM, and Shape Feature Extraction Methods for Breast Cancer Classification Using SVM,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 3, pp. 150–156, Jul 2021, doi: 10.14710/jtsiskom.2021.14104.

F. Rahmadsyah and M. Akbar, “Sistem Pakar Diagnosa Penyakit Kulit Akibat Infeksi Jamur Menggunakan Teorema Bayes,” Jurnal Komputer dan Informatika, vol. 9, no. 1, pp. 38–44, Mar 2021, doi: 10.35508/jicon.v9i1.3170.

A. Peryanto, A. Yudhana, and R. Umar, "Convolutional neural network and support vector machine in classification of flower images," Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, vol. 8, no. 1, pp. 1-7, 2022.

M. Yang and G. Thung, "Classification of trash for recyclability status," CS229 project report 2016.1, pp. 3, 2016.

A. Setyo Nugroho, R. Umar, and F. Abdul, “Klasifikasi Botol Plastik Menggunakan Multiclass Support Vector Machine,” JURNAL KHATULISTIWA INFORMATIKA, vol. 9, no. 2, pp. 79–85, 2021.

F. Arnia Ramadhani, R. Muharar, "Klasifikasi Otomatis Motif Tekstil Menggunakan Support Vector Machine Multi Kelas," Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 1, pp. 99-108, 2020, doi: 10.25126/jtiik.202071428.

R. Umar, I. Riadi, and P. Purwono, "Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial dengan Metode Support Vector Machines," Cybernetics, vol. 4, no. 1, pp. 32-40, 2020.

S. Hartono, H. Sujaini, and A. Perwitasari, “Komparasi Algoritma Nonparametrik untuk Klasifikasi Citra Wajah Berdasarkan Suku di Indonesia,” Jurnal Edukasi dan Penelitian Informatika, vol. 6, no. 3, pp. 337–343, Des 2020.

H. Apriani, J. H. Jaman, and R. I. Adam, "Optimasi SVM menggunakan algoritme grid search untuk identifikasi citra biji kopi robusta berdasarkan circularity dan eccentricity," Jurnal Teknologi dan Sistem Komputer, vol. 10, no. 1, pp. 12-19, 2022.

V. Punithavathi and D. Devakumari, "Detection of breast lesion using improved GLCM feature based extraction in mammogram images," published by SSRN eLibrary, 2019.. [Online]. Available in:

A. H. Farhan and M. Y. Kamil, "Texture Analysis of Breast Cancer via LBP, HOG, and GLCM techniques," in IOP Conference Series: Materials Science and Engineering, vol. 928, no. 7, p. 072098, November 2020, IOP Publishing. doi: 10.1088/1757-899X/928/7/072098.

A. R. W. Putri, "Classification of Breast Cancer Using the Digital Mammogram Method," JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 4, pp. 2752-2761, 2022.

A. Ben-Hur and J. Weston, "A User's Guide to Support Vector Machines," in O. Carugo and F. Eisenhaber (Eds.), Data Mining Techniques for the Life Sciences, vol. 609, pp. 223-239, Humana Press, 2010. doi: 10.1007/978-1-60327-241-4_13.

M. F. Rahman, D. Alamsah, M. I. Darmawidjadja, and I. Nurma, "Klasifikasi untuk diagnosa diabetes menggunakan metode bayesian regularization neural network (RBNN)," Jurnal Informatika, vol. 11, no. 1, p. 36, 2017.

I. Saputra and D. Rosiyadi, “Perbandingan Kinerja Algoritma K-Nearest Neighbor, Naïve Bayes Classifier dan Support Vector Machine dalam Klasifikasi Tingkah Laku Bully pada Aplikasi Whatsapp,” Faktor Exacta, vol. 12, no. 2, pp. 101, Jul 2019, doi: 10.30998/faktorexacta.v12i2.4181.

G. Hackeling, Mastering Machine Learning with scikit-learn. Birmingham: Packt Publishing Ltd., 2014.

Article Metrics

Abstract view(s): 691 time(s)
PDF: 388 time(s)


  • There are currently no refbacks.