KEKUATAN TARIK DAN BENDING KOMPOSIT BERPENGUAT SERAT ARENGGA PINNATA BERMATRIKS EPOKSI BERBASIS FRAKSI VOLUME DAN ORIENTASI SERAT

Rahmat Doni Widodo(1*), Fiqih Adi Noor Susetyo(2), Rusiyanto Rusiyanto(3), Kriswanto Kriswanto(4), Febri Budi Darsono(5)

(1) Jurusan Teknik Mesin Fakultas Teknik Universitas Negeri Semarang
(2) Fakultas Teknik, Program Studi Teknik Mesin Universitas Negeri Semarang
(3) Fakultas Teknik, Program Studi Pendidikan Teknik Mesin, Universitas Negeri Semarang
(4) Fakultas Teknik, Program Studi Pendidikan Teknik Mesin, Universitas Negeri Semarang
(5) Fakultas Teknik, Program Studi Pendidikan Teknik Mesin, Universitas Negeri Semarang
(*) Corresponding Author

Abstract

Tujuan penelitian ini yakni untuk melaporkan sifat tarik dan bending komposit dengan penguat serat Arenga Pinnata (ijuk) pada matriks epoksi berdasarkan variasi fraksi volume dan orientasi serat. Spesimen dipersiapkan dengan variasi fraksi volume epoksi : ijuk adalah 70% : 30% dan 60% : 40%, serta variasi orientasi serat ijuk yang digunakan 0°dan 90°. Spesimen komposit yang dibuat dengan teknik hand lay-up. Spesimen diuji tarik menggunakan ASTM D3039 dan diuji  bending sesuai ASTM D790. Hasil penelitian ini menunjukkan bahwa pada spesimen dengan fraksi volume 60% : 40% dan orientasi serat 0° menghasilkan nilai pengujian yang paling optimum baik itu pengujian tarik maupun bending, dimana nilai rata-rata kekuatan tarik dan bending tertinggi adalah 56.99 MPa dan 85 MPa, serta nilai rata-rata modulus elastisitas tarik dan bending tertinggi adalah 1.914 GPa dan 3.89 GPa. Komposisi fraksi volume serat ijuk yang semakin bertambah sampai dengan 40% disertai orientasi serat ijuk 0° dimana gaya tarik dan bending yang diberikan mampu diteruskan keseluruh bagian sehingga mampu memberikan pengaruh penguatan yang optimal.

Keywords

kekuatan tarik; kekuatan bending; faksi volume; orientasi serat ijuk; epoksi; komposit

References

Fanguerro, R., and Rana, S. (2018). Advances in Natural Fibre Composites: Raw Materials, Processing and Analysis. Springer International Publishing.

Campilho, R.D.S.G. (2016). Natural Fiber Composites. CRC Press.

Alma, H., and Shanks, R. (2014). Natural Fibre Composites: Materials, Processing and Properties. Woodhead Publishing Limited.

Sapuan, S.M. (2014). Tropical Natural Fiber Composites: Properties, Manufacture and Application. Springer Science+Business Media Singapore.

Chandrasekar, M., et. al. 2017. “A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption”. Plastics, Rubber and Composites Vol. 46, No. 3, pp.119–136.

Nurazzi, N.M., et. al. 2017. “A Review: Fibres, Polymer Matrices and Composites.” Pertanika Journal Science & Technology. 25 (4), pp. 1085 – 1102.

Sweety Shahinur and Mahbub Hasan. (2019). Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits. Encyclopedia of Renewable and Sustainable Materials. Elsevier Inc.

Mallick P.K., (1993). Fiber-reinforced Composites: Materials, Manufacturing, and Design, Marcel Dekker, New York.

Wambua, P., et. al. 2003. “Natural fibers: Can they replace glass in fiber reinforced plastics?.” Composites Science and Technology. 23. pp.1259-1264.

Sonar, T., et. al. 2015. “Natural Fiber Reinforced Polymer Composite Material-A Review.” IOSR Journal of Mechanical and Civil Engineering. Pp. 142-147.

Ahmad, Y.A.M., and Naser, A. H. 2019. “Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites.” Journal of Composite Science.3. 27. Pp. 1 - 38.

Victor, I., and Orsat, V. (2017). Characterization of Arenga pinnata (Palm) Sugar. Sugar Tech. Springer International Publishing.

Ilyas, R.A., et. al. 2019. “Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale.” Journal of Materials Research and Technology. 8 (3). pp. 2753–2766.

Ishak, M.R., et. al. 2013. “Sugar palm (Arenga pinnata): Its fibres, polymers and composites.” Carbohydrate Polymers. 91. pp. 699–710.

Bachtiar, D., et. al. 2010. “The tensile properties of single sugar palm (Arenga pinnata) fibre.” IOP Conference Series: Materials Science and Engineering 11. pp.12-18.

Sanyang, M. L., et.al. 2016. “Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review.” Renewable and Sustainable Energy Reviews 54 (2016) 533–549

Mogea, J., et. al. 1991. “Multipurpose palms: The sugar palm.” Agroforestry System. 13. pp.111-129.

Hrabe, P., et. al. 2018. “Mechanical behaviour of Sugar palm (Arenga pinnata) fibres.“ Agronomy Research. 16 (S1) pp. 1046-1051.

Begum, K., and Islam, M.A., 2013.” Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites: A Review.” Research Journal of Engineering Sciences. Vol. 2(3). pp. 46-53.

Sahari, J., et.al. 2011. “Comparative Study of Physical Properties Based on Different Parts of Sugar Palm Fibre Reinforced Unsaturated Polyester Composites.” Key Engineering Materials Vols. 471-472. pp 455-460.

Samlawi, A. K., and Hidayatullah, F. 2017. “Effect of Angle Orientation on Mechanical Strength of Arenga Pinnata Composite.” Prosiding SNTTM XVI, Oktober, hal. 19-22.

Ishak, M.R., et. al. 2011. “Effects of Impregnation Time on Physical and Tensile Properties of Impregnated Sugar Palm (Arenga pinnata) Fibres.” Key Engineering Materials. Vols. 471-472. pp 1147-1152.

Widodo, R.D., et. al. 2020. “The Effect of Orientation Fibres on Flexural and Tensile Properties of Arenga Pinnata Fibres Reinforced Polyester Composites.” IOP Conf. Series: Materials Science and Engineering 807. 012031.

Huzaifah, M.R.M., et. al. 2019. “Comparative study of physical, mechanical, and thermal properties on sugar palm fiber (Arenga pinnata (Wurmb) Merr.) reinforced vinyl ester composites obtained.” Bioresources. 14 (1). pp. 619-637.

Bachtiar, D., et. al. 2012. “Flexural and Impact Properties of Chemically Treated Sugar Palm Fiber Reinforced High Impact Polystyrene Composites.” Fibers and Polymers. Vol.13, No.7, pp. 894-898.

Bachtiar, D., et. al. 2010. “Flexural Properties Of Alkaline Treated Sugar Palm Fibre Reinforced Epoxy Composites.” International Journal of Automotive and Mechanical Engineering (IJAME). Volume 1, pp.79-90.

Leman, Z., et. al. 2008. “Moisture absorption behavior of sugar palm fiber reinforced epoxy composites.” Materials and Design. 29. pp. 1666–1670.

Agrebi, F., et.al. 2018. “Influence of treatments on the dielectric properties of sugar palm fiber reinforced phenolic composites.” Journal of Molecular Liquids. Accepted Manuscript.

Ilyas, R.A., et. al. 2018. “Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites.” Carbohydrate Polymers. Accepted Manuscript.

Sahari, J., el. al. 2013. “Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata).” Carbohydrate Polymers. 92. pp. 1711-1716.

Alaaeddin, H.M., et. al. 2019. “Physical and Mechanical Properties of Polyvinylidene Fluoride - Short Sugar Palm Fiber Nanocomposites.” Journal of Cleaner Production. Accepted Manuscript.

Mohammed, A.A., et. al. 2016. “Effect of sodium hydroxide on the tensile properties of sugar palm fibre reinforced thermoplastic polyurethane composites.” Journal of Mechanical Engineering and Sciences (JMES). Volume 10, Issue 1, pp. 1765-1777.

Radzi, A.M., et. al. 2019. “Effect of Alkaline Treatment on Mechanical, Physical and Thermal Properties of Roselle/Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites.” Fibers and Polymers. Vol.20, No.4, 847-855.

Atiqah, A., et. al. 2018. “Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites.” Composite Structures. Accepted Manuscript.

Widodo, B. 2008. “Analisa Sifat Mekanik Komposit Epoksi Dengan Penguat Serat Pohon Aren (Ijuk) Model Lamina Berorientasi Sudut Acak (Random).” Jurnal Teknologi Technoscientia. Vol. 1 No. 1.

Sastra, H.Y., et. al. 2007. “Tensile Properties of Arenga pinnata Fiber-Reinforced Epoxy Composites.” Polymer-Plastics Technology and Engineering, 45: pp. 149–155.

Rashid, B., et. al. 2016. “The Mechanical Performance of Sugar Palm Fibres (Ijuk) Reinforced Phenolic Composites.” International Journal of Precision Engineering and Manufacturing Vol. 17, No. 8, pp. 1001-1008.

Leman, Z., et. al. 2005.”Study on Impact Properties of Arenga Pinnata Fibre Reinforced Epoxy Composites.” Jurnal Teknologi Terpakai (Journal of Applied Technology). Vol.3, No.1. pp.14-19.

Bachtiar, D., et. al. 2008. “The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites.” Materials and Design. 29, pp. 1285–1290.

Ishak, M.R., et. al. 2009. “The Effect of Sea Water Treatment on The Impact and Flexural Strength of Sugar Palm Fibre Reinforced Epoxy Composites.” International Journal of Mechanical and Materials Engineering (IJMME). Vol. 4. No. 3, pp. 316-320.

Bachtiar, D., et. al. 2009. “The Influence of Alkaline Surface Fibre Treatment on the Impact Properties of Sugar Palm Fibre-Reinforced Epoxy Composites.” Polymer-Plastics Technology and Engineering, 48, pp. 379–383,

Ali, A., et.al. 2010. “The effect of aging on Arenga pinnata fiber-reinforced epoxy composite.” Materials and Design. 31, pp. 3550–3554

Leman, Z., et. al. 2010.”Pre-treatment by Water Retting to Improve the Interfacial Bonding Strength of Sugar Palm Fibre Reinforced Epoxy Composite.” Polymers from Renewable Resources, Vol. 1, No. 1.

Bachtiar, D., et. al. 2011. “Effects of Alkaline Treatment and a Compatibilizing agent on Tensile Properties of Sugar Palm Fibre-Reinforced High Impact Polystyrene Composites.” BioResources. 6 (4). pp. 4815-4823.

Izwan S.M., et. al 2020. “Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties.” Journal of Materials Research and Technology. 9 (3). pp. 5805-5814.

Leman, Z., et. al. 2008.” The Effect of Environmental Treatments on Fiber Surface Properties and Tensile Strength of Sugar Palm Fiber-Reinforced Epoxy Composites.” Polymer-Plastics Technology and Engineering, 47, pp. 606–612/

ASTM D3039. 2002. Standard Test Method for Tensile Properties of Polymer Matrix Composites Material. West Conshohocken, United States: ASTM Internasional.

ASTM D790. 2003. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. West Conshohocken, United States: ASTM Internasional.

Ibtihal, A.N., et. al. 2011. Study the Mechanical Properties of Epoxy Resin Reinforced With silica (quartz) and Alumina Particles.” The Iraqi Journal For Mechanical And Material Engineering, Vol.11, No.3, pp. 486-506.

Article Metrics

Abstract view(s): 429 time(s)
PDF (Bahasa Indonesia): 861 time(s)

Refbacks

  • There are currently no refbacks.