EFFECT OF STAINLESS STEEL 304 TIG WELDING AMPERE ON STRESS CORROSION CRACKING PHENOMENON

Moch Chamim(1*), Farit Ardiyanto(2)

(1) Mechanical Engineering Sekolah Tinggi Teknologi "Warga" Surakarta
(2) Electrical Engineering Sekolah Tinggi Teknologi "Warga" Surakarta
(*) Corresponding Author

Abstract

This article discusses the experimental results of stress corrosion cracking grade 304 stainless steel after GTAW welding under environmental corrosion simulation. The corrosion phenomenon that occurs is Stress Corrosion Cracking (SCC). The experimental method is a specimen welded using a current of 55, 60, and 65 Ampere respectively with a gas flow rate of 5 L/min argon shielding gas. The constant tensile loads of 2000 N and 4000 N in the state of the test object immersed for 2 x 24 hours in a solution of HCl + Aquades. Different Ampere and shielding gas flow rate parameters affected the cracks phenomenon. Vickers Hardness and Microstructure were used to evaluate the weld area. The lowest ampere of the weld results in maximum rough cracks from the surface and it's visible on the surface. The increased hardness of the 55 Ampere current specimen indicates a change in structure or phase after welding. The highest ampere produces fine cracks on all surfaces.

Keywords

stainless steel 304, corrosion, SCC, TIG.

Full Text:

PDF

References

Anon, “Corrosion of Stainless Steels.,” Eng., vol. 218, no. 11, pp. 1207–1209, 1978, doi: 10.1016/B978-0-12-803581-8.02893-9.

J. Xin, Y. Song, C. Fang, J. Wei, C. Huang, and S. Wang, “Evaluation of inter-granular corrosion susceptibility in 316LN austenitic stainless steel weldments,” Fusion Eng. Des., vol. 133, no. September 2017, pp. 70–76, 2018, doi: 10.1016/j.fusengdes.2018.05.078.

X. Li, J. Liu, J. Sun, X. Lin, C. Li, and N. Cao, “Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism : Part I . In acidic soil environment,” Corros. Sci., no. June, p. 108167, 2019, doi: 10.1016/j.corsci.2019.108167.

L. Dong, Q. Peng, E. Han, W. Ke, and L. Wang, “Stress Corrosion Cracking in the Heat Affected Zone of a Stainless Steel,” Eval. Program Plann., 2016, doi: 10.1016/j.corsci.2016.02.030.

W. Chung, J. Huang, L. Tsay, and C. Chen, “Stress corrosion cracking in the heat-affected zone of A508 steel welds under high-temperature water,” J. Nucl. Mater., vol. 408, no. 1, pp. 125–128, 2011, doi: 10.1016/j.jnucmat.2010.10.052.

B. A. Kessal, C. Fares, M. H. Meliani, A. Alhussein, O. Bouledroua, and M. François, “Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone,” Eng. Fail. Anal., p. 104200, 2019, doi: 10.1016/j.engfailanal.2019.104200.

B. Singh, P. Singhal, and K. K. Saxena, “Investigation of thermal efficiency and depth of penetration during GTAW process,” Mater. Today Proc., vol. 18, pp. 2962–2969, 2019, doi: 10.1016/j.matpr.2019.07.166.

Z. Chen, J. Chen, and Z. Feng, “Welding penetration prediction with passive vision system,” J. Manuf. Process., vol. 36, no. October, pp. 224–230, 2018, doi: 10.1016/j.jmapro.2018.10.009.

F. J. Cárcel-Carrasco, M. Pascual-Guillamón, L. S. García, F. S. Vicente, and M. A. Pérez-Puig, “Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels,” Appl. Sci., vol. 9, no. 16, 2019, doi: 10.3390/app9163265.

Y. Chen, B. Yang, Y. Zhou, Y. Wu, and H. Zhu, “Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application,” Acta Mater., vol. 197, pp. 172–183, 2020, doi: 10.1016/j.actamat.2020.07.046.

E. Arzaghi, B. H. Chia, M. M. Abaei, R. Abbassi, and V. Garaniya, “Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines,” Process Saf. Environ. Prot., vol. 141, pp. 135–139, 2020, doi: 10.1016/j.psep.2020.05.024.

X. Wang et al., “Pitting corrosion of 2Cr13 stainless steel in deep-sea environment,” J. Mater. Sci. Technol., 2020, doi: 10.1016/j.jmst.2020.04.036.

L. Feng et al., “A parametric study on effects of pitting corrosion on steel plate’s ultimate strength,” Appl. Ocean Res., vol. 95, no. December 2019, p. 102026, 2020, doi: 10.1016/j.apor.2019.102026.

Article Metrics

Abstract view(s): 367 time(s)
PDF: 177 time(s)

Refbacks

  • There are currently no refbacks.