PENINGKATAN PERFORMA PANEL SURYA DENGAN SISTEM PENDINGIN UNTUK MEREDUKSI PANAS PERMUKAAN

Eqwar Saputra(1*), Dwi Purwanto(2), Sulthan Rofi’ur Rahim(3), Alwi Isya Bakhtiar(4)

(1) 
(2) Fakultas Teknik dan Sains, Program Studi Teknik Mesin Universitas Muhammadiyah Purwokerto
(3) Program Studi Teknik Mesin, Universitas Muhammadiyah Purwokerto
(4) Program Studi Teknik Mesin, Universitas Muhammadiyah Purwokerto
(*) Corresponding Author

Abstract

Tujuan penelitian ini adalah mengevaluasi kinerja panel surya dengan metode pendinginan. Penelitian diawali dengan rancang bangun peralatan sistem panel surya dengan sistem pendingin dan tidak menggunakan sistem pendingin. Metode pendinginan menggunakan air yang dialirkan pada permukaan panel surya. Beberapa alat dan bahan yang digunakan diantaranya panel surya 2 buah kapasitas 115 WP, data logger, dan perangkat panel. Beberapa sensor yang digunakan untuk merekam data adalah sensor arus dan tegangan PZEM17, dan sensor temperatur DS18B20 yang digunakan sebanyak dua buah. Data logger shield untuk mencatat hasil perekaman sensor kedalam SD card dan ditampilkan pada LCD 16x2. Data yang diambil berupa temperatur, tegangan dan daya keluaran panel surya. Pengambilan data seperti pengukuran temperatur tegangan dan daya keluaran panel surya dilakukan dari jam 09.00 – 15.00 wib selama 3 hari (27, 28 dan 29 oktober 2021). Hasil penelitian menunjukkan bahwa sistem pendingin pada panel surya mampu menjaga kinerja panel surya. Hal ini terlihat bahwa dari hasil penelitian menunjukkan panel surya dengan pendingin mengalami peningkatan tegangan dan daya rata-rata masing-masing sebesar 5.5 % dan 6% dibandingkan dengan tanpa pendingin.

Keywords

Daya; kinerja; panel surya; pendinginan; tegangan; temperatur

References

A. H. A. Al-Waeli et al., “Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant,” Energy, vol. 151, pp. 33–44, 2018, doi: 10.1016/j.energy.2018.03.040.

H. A. Hussien, A. H. Numan, and A. R. Abdulmunem, “Improving of the photovoltaic / thermal system performance using water cooling technique,” IOP Conf. Ser. Mater. Sci. Eng., vol. 78, no. 1, 2015, doi: 10.1088/1757-899X/78/1/012020.

I. Ceylan, A. E. Gürel, H. Demircan, and B. Aksu, “Cooling of a photovoltaic module with temperature controlled solar collector,” Energy Build., vol. 72, no. 2014, pp. 96–101, 2014, doi: 10.1016/j.enbuild.2013.12.058.

J. Wong, R. Sridharan, and V. Shanmugam, “Quantifying Edge and Peripheral Recombination Losses in Industrial Silicon Solar Cells,” IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3750–3755, 2015, doi: 10.1109/TED.2015.2480089.

P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, “Advanced cooling techniques of P.V. modules: A state of art,” Case Stud. Therm. Eng., vol. 21, no. June, p. 100674, 2020, doi: 10.1016/j.csite.2020.100674.

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 40, pp. 12282–12287, 2015, doi: 10.1073/pnas.1509453112.

H. Dehra, “An investigation on energy performance assessment of a photovoltaic solar wall under buoyancy-induced and fan-assisted ventilation system,” Appl. Energy, vol. 191, pp. 55–74, 2017, doi: 10.1016/j.apenergy.2017.01.038.

A. Kasaeian, Y. Khanjari, S. Golzari, O. Mahian, and S. Wongwises, “Effects of forced convection on the performance of a photovoltaic thermal system: An experimental study,” Exp. Therm. Fluid Sci., vol. 85, pp. 13–21, 2017, doi: 10.1016/j.expthermflusci.2017.02.012.

H. M. S. Bahaidarah, “Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics,” Sol. Energy, vol. 135, pp. 605–617, 2016, doi: 10.1016/j.solener.2016.06.015.

S. Nižetić, D. Čoko, A. Yadav, and F. Grubišić-Čabo, “Water spray cooling technique applied on a photovoltaic panel: The performance response,” Energy Convers. Manag., vol. 108, pp. 287–296, 2016, doi: 10.1016/j.enconman.2015.10.079.

H. Jouhara et al., “The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material,” Energy, vol. 108, pp. 148–154, 2016, doi: 10.1016/j.energy.2015.07.063.

Y. Du, “Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment,” Energy Convers. Manag., vol. 134, pp. 70–76, 2017, doi: 10.1016/j.enconman.2016.11.059.

A. K. Suresh, S. Khurana, G. Nandan, G. Dwivedi, and S. Kumar, “Role on nanofluids in cooling solar photovoltaic cell to enhance overall efficiency,” Mater. Today Proc., vol. 5, no. 9, pp. 20614–20620, 2018, doi: 10.1016/j.matpr.2018.06.442.

A. Warsito, E. Adriono, My. Nugroho, and B. Winardi, “Dipo Pv Cooler, Penggunaan Sistem Pendingin Temperatur Heatsink Fan Pada Panel Sel Surya (Photovoltaic) Sebagai Peniingkatan Kerja Energi Listrik Baru Terbarukan,” Transient, vol. 2, no. 3, pp. 499–503, 2013.

Article Metrics

Abstract view(s): 844 time(s)
PDF (Bahasa Indonesia): 1670 time(s)

Refbacks

  • There are currently no refbacks.