SEPARATOR TECHNOLOGY IN LI-ION BATTERIES: MATERIALS, FABRICATION TECHNIQUES, AND PERFORMANCE TESTS

Nikolas Krisma Hadi Fernandez(1), Farid Triawan(2*)

(1) Department of Mechanical Engineering, Faculty of Engineering and Technology Sampoerna University Department of Mechanical Engineering, Faculty of Mechanical Engineering and Manufacturing Universiti Tun Hussein Onn Malaysia
(2) Department of Mechanical Engineering, Faculty of Engineering and Technology Sampoerna University
(*) Corresponding Author

Abstract

The trend of using electric vehicles is increasing. With the increasing use of electric vehicles, it is necessary to master the key technologies used by electric vehicles, one of which is batteries, especially lithium-ion batteries (LiB). There are many important components in the LiB, one of which is a separator that serves to block short circuits between the anode and cathode of the battery while providing a way for ion exchange to continue. This article summarizes important information related to battery separator technology. The information includes the materials that have been used in commercial products and those of under research and development. In addition, the method of fabricating the separator using conventional methods and 3D printing is discussed. Finally, this article also discusses how several studies perform performance tests on separator materials.

 

Keywords: battery separator, fabrication, materials, performance test, lithium-ion battery.

Keywords

separator baterai; fabrikasi; material; uji performa; baterai ion litium

Full Text:

PDF

References

IEA, “Global Electric Vehicle Outlook 2022,” IEA, 2022.

P. Nur Halimah et al., “Battery Cells for Electric Vehicles,” Int. J. Sustain. Transp. Technol., vol. 2, no. 2, pp. 54–57, Oct. 2019, doi: 10.31427/IJSTT.2019.2.2.3.

R. A. Subekti, Peluang dan tantangan pengembangan mobil listrik nasional, Cetakan pertama. Menteng, Jakarta: LIPI Press, 2014.

Kementerian Investasi/BPKM, “Investasi Menjanjikan di Sektor Industri Sel Baterai Mobil Listrik Indonesia,” 2022. [Online]. Available: https://www.bkpm.go.id/id/publikasi/detail/berita/investasi-menjanjikan-di-sektor-industri-sel-baterai-mobil-listrik-indonesia. [Accessed: Jul. 21, 2022]

R. D. Widyantara et al., “Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle,” Energies, vol. 14, no. 23, p. 7954, Nov. 2021, doi: 10.3390/en14237954.

X. Sun, Z. Li, X. Wang, and C. Li, “Technology Development of Electric Vehicles: A Review,” Energies, vol. 13, no. 1, p. 90, Dec. 2019, doi: 10.3390/en13010090.

M. Aziz, Y. Marcellino, I. A. Rizki, S. A. Ikhwanuddin, and J. W. Simatupang, “STUDI ANALISIS PERKEMBANGAN TEKNOLOGI DAN DUKUNGAN PEMERINTAH INDONESIA TERKAIT MOBIL LISTRIK,” TESLA J. Tek. Elektro, vol. 22, no. 1, p. 45, Mar. 2020, doi: 10.24912/tesla.v22i1.7898.

M. A. Hannan, M. M. Hoque, A. Mohamed, and A. Ayob, “Review of energy storage systems for electric vehicle applications: Issues and challenges,” Renew. Sustain. Energy Rev., vol. 69, pp. 771–789, Mar. 2017, doi: 10.1016/j.rser.2016.11.171.

Y. Ding, Z. P. Cano, A. Yu, J. Lu, and Z. Chen, “Automotive Li-Ion Batteries: Current Status and Future Perspectives,” Electrochem. Energy Rev., vol. 2, no. 1, pp. 1–28, Mar. 2019, doi: 10.1007/s41918-018-0022-z.

D. Bresser et al., “Perspectives of automotive battery R&D in China, Germany, Japan, and the USA,” J. Power Sources, vol. 382, pp. 176–178, Apr. 2018, doi: 10.1016/j.jpowsour.2018.02.039.

Mark T. Demeuse, Polymer-based Separators for Lithium-ion Batteries: Production, Processing, and Properties. Amsterdam: Elsevier, 2021.

L. N. Putri, R. R. Alhakim, A. R. A. Ichwan, and E. Retno, “Review : Separator Baterai Ion Litium Dengan Penambahan Filler Dalam Membran PVDF/Selulosa,” p. 8.

J. Choi and P. J. Kim, “A roadmap of battery separator development: Past and future,” Curr. Opin. Electrochem., vol. 31, p. 100858, Feb. 2022, doi: 10.1016/j.coelec.2021.100858.

P. Arora and Z. (John) Zhang, “Battery Separators,” Chem. Rev., vol. 104, no. 10, pp. 4419–4462, Oct. 2004, doi: 10.1021/cr020738u.

A. Li et al., “A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches,” Molecules, vol. 26, no. 2, p. 478, Jan. 2021, doi: 10.3390/molecules26020478.

H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, “A review of recent developments in membrane separators for rechargeable lithium-ion batteries,” Energy Env. Sci, vol. 7, no. 12, pp. 3857–3886, 2014, doi: 10.1039/C4EE01432D.

S. Thiangtham, N. Saito, and H. Manuspiya, “Asymmetric Porous and Highly Hydrophilic Sulfonated Cellulose/Biomembrane Functioning as a Separator in a Lithium-Ion Battery,” ACS Appl. Energy Mater., vol. 5, no. 5, pp. 6206–6218, May 2022, doi: 10.1021/acsaem.2c00602.

C. Cao, L. Tan, W. Liu, J. Ma, and L. Li, “Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries,” J. Power Sources, vol. 248, pp. 224–229, Feb. 2014, doi: 10.1016/j.jpowsour.2013.09.027.

S. S. Zhang, “A review on the separators of liquid electrolyte Li-ion batteries,” J. Power Sources, vol. 164, no. 1, pp. 351–364, Jan. 2007, doi: 10.1016/j.jpowsour.2006.10.065.

Q.-Q. Gu, H.-J. Xue, Z.-W. Li, J.-C. Song, and Z.-Y. Sun, “High-performance polyethylene separators for lithium-ion batteries modified by phenolic resin,” J. Power Sources, vol. 483, p. 229155, Jan. 2021, doi: 10.1016/j.jpowsour.2020.229155.

L. Deng, C. Cai, Y. Huang, and Y. Fu, “In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries,” Microporous Mesoporous Mater., vol. 329, p. 111544, Jan. 2022, doi: 10.1016/j.micromeso.2021.111544.

J. C. Barbosa et al., “Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer,” Mater. Today Energy, vol. 18, p. 100494, Dec. 2020, doi: 10.1016/j.mtener.2020.100494.

J. Cannarella, X. Liu, C. Z. Leng, P. D. Sinko, G. Y. Gor, and C. B. Arnold, “Mechanical Properties of a Battery Separator under Compression and Tension,” J. Electrochem. Soc., vol. 161, no. 11, pp. F3117–F3122, 2014, doi: 10.1149/2.0191411jes.

M. K. Aslam et al., “How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression,” Nano Energy, vol. 86, p. 106142, Aug. 2021, doi: 10.1016/j.nanoen.2021.106142.

L. Frenck, G. K. Sethi, J. A. Maslyn, and N. P. Balsara, “Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes,” Front. Energy Res., vol. 7, p. 115, Nov. 2019, doi: 10.3389/fenrg.2019.00115.

L. A. Selis and J. M. Seminario, “Dendrite formation in silicon anodes of lithium-ion batteries,” RSC Adv., vol. 8, no. 10, pp. 5255–5267, 2018, doi: 10.1039/C7RA12690E.

M. C. Ma, G. Li, X. Chen, L. A. Archer, and J. Wan, “Suppression of dendrite growth by cross-flow in microfluidics,” Sci. Adv., vol. 7, no. 8, p. eabf6941, Feb. 2021, doi: 10.1126/sciadv.abf6941.

C. Martinez-Cisneros, C. Antonelli, B. Levenfeld, A. Varez, and J.-Y. Sanchez, “Evaluation of polyolefin-based macroporous separators for high temperature Li-ion batteries,” Electrochimica Acta, vol. 216, pp. 68–78, Oct. 2016, doi: 10.1016/j.electacta.2016.08.105.

B. Jung et al., “Thermally stable non-aqueous ceramic-coated separators with enhanced nail penetration performance,” J. Power Sources, vol. 427, pp. 271–282, Jul. 2019, doi: 10.1016/j.jpowsour.2019.04.046.

K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, and J. L. M. Rupp, “Solid‐State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces,” Adv. Energy Mater., vol. 11, no. 1, p. 2002689, Jan. 2021, doi: 10.1002/aenm.202002689.

A. Saal, T. Hagemann, and U. S. Schubert, “Polymers for Battery Applications—Active Materials, Membranes, and Binders,” Adv. Energy Mater., vol. 11, no. 43, p. 2001984, Nov. 2021, doi: 10.1002/aenm.202001984.

M. Yang and J. Hou, “Membranes in Lithium Ion Batteries,” Membranes, vol. 2, no. 3, pp. 367–383, Jul. 2012, doi: 10.3390/membranes2030367.

Celgard, “Celgard’s Products Data.” [Online]. Available: https://www.celgard.com/product-data. [Accessed: Aug. 01, 2022]

Entek Membrane LLC, “Entek’s Products.” [Online]. Available: https://entek.com/lithium/products/. [Accessed: Aug. 01, 2022]

Entek Membrane LLC, Separator Product Portfolio. Entek Membrane LLC.

Asahi-Kasei, “Asahi-Kasei’s Products.” [Online]. Available: https://www.asahi-kasei.com/services_products/search/#material?category1=4. [Accessed: Aug. 01, 2022]

X. Zuo et al., “Bubble-template-assisted synthesis of hollow fullerene-like MoS 2 nanocages as a lithium ion battery anode material,” J. Mater. Chem. A, vol. 4, no. 1, pp. 51–58, 2016, doi: 10.1039/C5TA06869J.

Y. Liu et al., “3D printed separator for the thermal management of high-performance Li metal anodes,” Energy Storage Mater., vol. 12, pp. 197–203, May 2018, doi: 10.1016/j.ensm.2017.12.019.

C. Liao et al., “A flame-retardant, high ionic-conductivity and eco-friendly separator prepared by papermaking method for high-performance and superior safety lithium-ion batteries,” Energy Storage Mater., vol. 48, pp. 123–132, Jun. 2022, doi: 10.1016/j.ensm.2022.03.008.

J. Qian et al., “Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose,” Mater. Today, vol. 54, pp. 18–26, Apr. 2022, doi: 10.1016/j.mattod.2022.02.015.

S. C. Mun and J. H. Won, “Manufacturing Processes of Microporous Polyolefin Separators for Lithium-Ion Batteries and Correlations between Mechanical and Physical Properties,” Crystals, vol. 11, no. 9, p. 1013, Aug. 2021, doi: 10.3390/cryst11091013.

C. J. Weber, S. Geiger, S. Falusi, and M. Roth, “Material review of Li ion battery separators,” presented at the REVIEW ON ELECTROCHEMICAL STORAGE MATERIALS AND TECHNOLOGY: Proceedings of the 1st International Freiberg Conference on Electrochemical Storage Materials, Freiberg, Germany, 2014, pp. 66–81, doi: 10.1063/1.4878480 [Online]. Available: http://aip.scitation.org/doi/abs/10.1063/1.4878480. [Accessed: Sep. 07, 2022]

T. Wu, K. Wang, M. Xiang, and Q. Fu, “Progresses in Manufacturing Techniques of Lithium‐Ion Battery Separators in China,” Chin. J. Chem., vol. 37, no. 12, pp. 1207–1215, Dec. 2019, doi: 10.1002/cjoc.201900280.

T. Wu, M. Xiang, Y. Cao, J. Kang, and F. Yang, “Pore formation mechanism of β nucleated polypropylene stretched membranes,” RSC Adv, vol. 4, no. 69, pp. 36689–36701, 2014, doi: 10.1039/C4RA03589E.

L. Ding, R. Xu, L. Pu, F. Yang, T. Wu, and M. Xiang, “Pore formation and evolution mechanism during biaxial stretching of β-iPP used for lithium-ion batteries separator,” Mater. Des., vol. 179, p. 107880, Oct. 2019, doi: 10.1016/j.matdes.2019.107880.

G. Shi, F. Chu, G. Zhou, and Z. Han, “Plastic deformation and solid-phase transformation in β-phase polypropylene,” Makromol. Chem., vol. 190, no. 4, pp. 907–913, Apr. 1989, doi: 10.1002/macp.1989.021900423.

Xiangyun Wei and Charles Haire, “Biaxially Oriented Microporous Membrane,” US008795565B2.

Z. Lyu et al., “Design and Manufacture of 3D-Printed Batteries,” Joule, vol. 5, no. 1, pp. 89–114, Jan. 2021, doi: 10.1016/j.joule.2020.11.010.

A. Maurel et al., “Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling,” Sci. Rep., vol. 9, no. 1, p. 18031, Dec. 2019, doi: 10.1038/s41598-019-54518-y.

C. Reyes et al., “Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication,” ACS Appl. Energy Mater., p. acsaem.8b00885, Oct. 2018, doi: 10.1021/acsaem.8b00885.

C. Yuan, L. Wang, S. Yin, and J. Xu, “Generalized separator failure criteria for internal short circuit of lithium-ion battery,” J. Power Sources, vol. 467, p. 228360, Aug. 2020, doi: 10.1016/j.jpowsour.2020.228360.

A. J. Blake et al., “3D Printable Ceramic–Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability,” Adv Energy Mater, p. 10, 2017.

A. Mahendra and Z. A. I. Supardi, “SEBUAH REVIEW: SPEKTROSKOPI IMPEDANSI ELEKTROKIMIA DAN APLIKASINYA DALAM BATERAI LITHIUM-ION,” Inov. Fis. Indones., vol. 10, no. 2, pp. 59–67, Jul. 2021, doi: 10.26740/ifi.v10n2.p59-67.

S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nat. Rev. Methods Primer, vol. 1, no. 1, p. 41, Dec. 2021, doi: 10.1038/s43586-021-00039-w.

S. T. Manik and E. Taer, “Impedansi Spektroskopy Sel Superkapasitor menggunakan Elektroda Karbon Bentuk Monolit dari Ampas Tebu,” p. 7.

Kruss Scientific, “Drop Shape Analyzer-DSA100E,” Drop Shape Analyzer-DSA100E. [Online]. Available: https://www.kruss-scientific.com/en/products-services/products/dsa100e. [Accessed: Sep. 15, 2022]

ATA Scientific Instruments, “Attension Theta Flex.” [Online]. Available: https://www.atascientific.com.au/products/attension-theta/. [Accessed: Sep. 15, 2022]

Biolin Scientific, “Standards for Tensiometer.” [Online]. Available: https://www.biolinscientific.com/attension/standards-for-tensiometers#optical-tensiometers. [Accessed: Sep. 13, 2022]

D. E. S. Arifin, M. Zainuri, and J. A. R. Hakim, “Karakterisasi Sifat Separator Komposit PVDF/poli(dimetilsiloksan) Dengan Metode Pencampuran Membran (Blending Membrane),” vol. 3, p. 5, 2014.

E. M. Wigayati, I. Purawiardi, and Q. Sabrina, “Karakteristik Morfologi Permukaan Pada Polimer PVdF-LiBOB-ZrO2 dan Potensinya untuk Elektrolit Baterai Litium,” J. Kim. Dan Kemasan, vol. 40, no. 1, p. 1, Feb. 2018, doi: 10.24817/jkk.v0i0.3028.

A. N. Fauza, M. M. Mardiyati, and S. Steven, “PEMBUATAN DAN KARAKTERISASI SEPARATOR BATERAI BERBAHAN SELULOSA ALGA CLADOPHORA,” J. Teknol. Bahan Dan Barang Tek., vol. 9, no. 2, p. 69, Dec. 2019, doi: 10.37209/jtbbt.v9i2.135.

P. Bai et al., “Interactions between Lithium Growths and Nanoporous Ceramic Separators,” Joule, vol. 2, no. 11, pp. 2434–2449, Nov. 2018, doi: 10.1016/j.joule.2018.08.018.

D. Aurbach, “A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions,” Solid State Ion., vol. 148, no. 3–4, pp. 405–416, Jun. 2002, doi: 10.1016/S0167-2738(02)00080-2.

Article Metrics

Abstract view(s): 859 time(s)
PDF: 472 time(s)

Refbacks

  • There are currently no refbacks.