Karakterisasi Tiga Tumbuhan Obat Antihiperkolesterolemia dengan Pendekatan Berbasis Profil Anatomi, Histokimia, dan Fitokimia

Reny Syahruni(1), Abdul Halim Umar(2*), Nur Hidayah Asnar(3)

(1) Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Jalan Perintis Kemerdekaan Km. 13.7 Daya, Makassar 90242, Indonesia.
(2) Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Jalan Perintis Kemerdekaan Km. 13.7 Daya, Makassar 90242, South Sulawesi, Indonesia
(3) Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Jalan Perintis Kemerdekaan Km. 13.7 Daya, Makassar 90242, Indonesia.
(*) Corresponding Author

Abstract

It is very important to validate the characterization of medicinal plants to ensure their use, especially if the medicinal plants are to be used only for certain organs. This study aimed to obtain information related to the type of secretory structure and the secondary metabolites they accumulated, as well as the phytochemical profile of three antihypercholesterolemic plants. This study used three organs (leaves, stem bark, and roots) from Moringa oleifera, Muntingia calabura, and Annona muricata with anatomical, histochemical, and phytochemical methods. Anatomical and histochemical tests were carried out by observing the fresh sample incision to see the presence of secretory structures (secretory cavities, glandular trichomes, idioblast cells). Histochemical tests were carried out on fresh sample incision using specific reagents to determine the secretory structure producing/accumulating secondary metabolites (alkaloids, phenolics, lipophilic, and terpenoids), while phytochemical tests were carried out to identify their secondary metabolites with thin layer chromatographic technique (qualitative). The results showed that the three antihypercholesterolemic plants contained several secretory structures, namely: glandular trichomes, idioblast cells, and secretory cavities, and were identified as containing secondary metabolites of alkaloids, phenolics, lipophilic, and terpenoids. This finding is supported by the chromatographic results of the extracts of the three species. Techniques based on anatomical, histochemical, and phytochemical profiles can be applied to identify plant organs containing specific secondary metabolites

Keywords

Histolokalisasi; Kromatografi; Moringa oleifera; Muntingia calabura; Annona muricata; Struktur Sekretori

Full Text:

PDF

References

Aladdin, N.-A., Jamal, J.A., Talip, N., Hamsani, N.A.M., Rahman, M.R.A., Sabandar, C.W., Muhammad, K., Husain, K., Jalil, J., 2016. Comparative study of three Marantodes pumilum varieties by microscopy, spectroscopy and chromatography. Revista Brasileira de Farmacognosia 26, 1–14.

Araya-Quintanilla, F., Gutiérrez-Espinoza, H., Moyano-Gálvez, V., Muñoz-Yánez, M.J., Pavez, L., García, K., 2019. Effectiveness of black tea versus placebo in subjects with hypercholesterolemia: A PRISMA systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 13, 2250–2258.

Arthur, Woode, E., Terlabi, E.O., Larbie, C., 2011. Evaluation of acute and subchronic toxicity of Annona muricata (Linn.) aqueous extract in animals. European Journal of Experimental Biology 1, 0–0.

Banu, R., H, Nagarajan, N., 2014. TLC and HPTLC fingerprinting of leaf extracts of Wedelia chinensis (Osbeck) Merrill. Journal of Pharmacognosy and Phytochemistry 2, 29–33.

Boix, Y.F., Victório, C.P., Defaveri, A.C.A., Arruda, R.D.C.D.O., Sato, A., Lage, C.L.S., 2012. Glandular trichomes of Rosmarinus officinalis L.: Anatomical and phytochemical analyses of leaf volatiles. Plant Biosystems 145, 848–856.

Brechú-Franco, A.E., Laguna-Hernández, G., De la Cruz-Chacón, I., González-Esquinca, A.R., 2016. In situ histochemical localisation of alkaloids and acetogenins in the endosperm and embryonic axis of Annona macroprophyllata Donn. Sm. seeds during germination. European Journal of Histochemistry 60, 2568.

Castro, M. de M., Demarco, D., 2008. Phenolic compounds produced by secretory structures in plants: a brief review. Natural Product Communications 3, 1273–1284.

Coelho, V.P. de M., Leite, J.P.V., Nunes, L.G., Ventrella, M.C., Coelho, V.P. de M., Leite, J.P.V., Nunes, L.G., Ventrella, M.C., 2012. Anatomy, histochemistry and phytochemical profile of leaf and stem bark of Bathysa cuspidata (Rubiaceae). Australian Journal of Botany 60, 49–60.

Dias, M.I., Sousa, M.J., Alves, R.C., Ferreira, I.C.F.R., 2016. Exploring plant tissue culture to improve the production of phenolic compounds: a review. Industrial Crops and Products 82, 9–22.

Dickison, W., 2000. Integrative Plant Anatomy - 1st Edition.

Furr, M., Mahlberg, P.G., 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44, 153–159.

Gomez, A.A., Mercado, M.I., Belizán, M.M.E., Ponessa, G., Vattuone, M.A., Sampietro, D.A., 2019. In situ histochemical localization of alkaloids in leaves and pods of Prosopis ruscifolia. Flora 256, 1–6.

Kromer, K., Kreitschitz, A., Kleinteich, T., Gorb, S.N., Szumny, A., 2016. Oil secretory system in vegetative organs of three Arnica taxa: essential oil synthesis, distribution and accumulation. Plant and Cell Physiology 57, 1020–1037.

Martin, D., Tholl, D., Gershenzon, J., Bohlmann, J., 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway Spruce stems. Plant Physiology 129, 1003–1018.

Pirillo, A., Casula, M., Olmastroni, E., Norata, G.D., Catapano, A.L., 2021. Global epidemiology of dyslipidaemias. Nature Reviews Cardiology 18, 689–700.

Seixas, D.P., Palermo, F.H., Rodrigues, T.M., 2021. Leaf and stem anatomical traits of Muntingia calabura L. (Muntingiaceae) emphasizing the production sites of bioactive compounds. Flora 278, 151802.

Sopiah, B., Muliasari, H., Yuanita, E., 2019. Skrining fitokimia dan potensi aktivitas antioksidan ekstrak etanol daun hijau dan daun merah kastuba. Jurnal Ilmu Kefarmasian Indonesia 17, 27.

Takagi, M., Funahashi, S., Ohta, K., Nakabayashi, T., 1980. Phyllospadine, a new flavonoidal alkaloid from the sea-grass Phyllosphadix iwatensis. Agricultural and Biological Chemistry 44, 3019–3020.

Tjay, T.H., 2015. , in: Obat-obat Penting Edisi ketujuh. Elex Media Komputindo.

Tjong, A., Assa, Y.A., Purwanto, D.S., 2021. Kandungan antioksidan pada daun kelor (Moringa oleifera) dan potensi sebagai penurun kadar kolesterol darah. eBiomedik 9.

Umar, A.H., Ratnadewi, D., Rafi, M., Sulistyaningsih, Y.C., Hamim, H., 2021a. Potensi tumbuhan Curculigo spp. sebagai antidiabetes: pendekatan berbasis anatomi dan histokimia, metabolomik, bioinformatika, dan bioteknologi. Disertasi Doktoral, Sekolah Pascasarjana, IPB University.

Umar, A.H., Ratnadewi, D., Rafi, M., Sulistyaningsih, Y.C., Hamim, H., 2021b. Metabolite profiling, distribution of secretory structures, and histochemistry in Curculigo orchioides Gaertn. and Curculigo latifolia Dryand. ex W.T.Aiton. Turkish Journal of Botany 45, 421–439.

Wahyu, S., Arsal, A.S.F., Maharani, I.C., 2019. Efektivitas ekstrak daun kelor (Moringa oleifera) terhadap penurunan kadar kolesterol total pada tikus putih (Rattus novergicus). Green Medical Journal 1, 97–110.

Wurdianing, I., Nugraheni, S.A., Rahfiludin, Z., 2014. Efek ekstrak daun sirsak (Annona muricata Linn) terhadap profil lipid tikus putih jantan (Rattus norvegicus). The Indonesian Journal of Nutrition 3, 7–12.

Article Metrics

Abstract view(s): 631 time(s)
PDF: 658 time(s)

Refbacks

  • There are currently no refbacks.