Physical Characterization of Chitosan-based Syzygium polyanthum Leaves Extract Nanoparticles

Evi Nurul Hidayati(1*), Annisa Maulidia Rahayyu(2), Fauzia Azzahra(3)

(1) Department of Pharmacy, Faculty of Health Sciences, Kusuma Husada University Surakarta, Jl. Jaya Wijaya No.11 Kadipiro, Surakarta, Indonesia
(2) Faculty of Pharmacy, Institute of Technology Sumatera, Jl. Terusan Ryacudu - Way Huwi, Lampung, Indonesia
(3) Faculty of Pharmacy, META Industrial Polytechnique, Jl. Inti I no.7, Cikarang, Indonesia
(*) Corresponding Author

Abstract

Indonesia is one of the most abundant in natural resources countries in the world. The bay leaves are well- known among the locals and have various pharmacological properties, including anti dyslipidemia. Currently, the use of nanoparticle technologies in dyslipidemia treatment is quite popular. These treatments have numerous advantages such as enhancing the potency of dyslipidemia agents. The purpose of this study is to develop chitosan-based nanoparticles made from Syzygium polyanthum leaves extract using crosslink method. Chitosan is used as the polymer and STPP as the crosslinker with the ratio of chitosan:STPP is 5:1. Two formula is generated, F1 is chitosan-based nanoparticle extract and F2 is chitosan-base nanoparticle blank. Syzygium polyanthum extract contains alkaloid, flavonoid, saponin, quinone, and tannin, as determined by secondary metabolites screening. The total flavonoid content of Syzygium polyanthum leaves extract determined as quercetin is 0.04%. Physical properties of generated nanoparticles such as size, polydispersity index (PI) and zeta potential are investigated. Particle sizes of nanoparticles F1 and F2 are 180.1 ± 0.5 nm and 464.3 ± 25.98 nm with the PI values of F1 and F2 are 0.220 ± 0.02 and 0.563 ± 0.112 respectively. Zeta potential value for F1 is 21.8 ± 1.74 mV and F2 is 17.8 ± 0.21 mV. The entrapment efficiency is evaluated to determine the extract content of the nanoparticle, and the result is 47.13%. From this research, the chitosan-based nanoparticles containing Syzygium polyanthum formula have good physical properties. Further investigation is needed to evaluate its potential as anti-dyslipidemia. 

Keywords

nanoparticles, chitosan, Syzygium polyanthum, ionotropic gelation

Full Text:

PDF

References

Afifah, A. N., Dono, N. D., Zuprizal., 2021. Optimizing antioxidant properties of salam (Syzygium polyanthum) leaf extract through nanoencapsulation technology. IOP Conf. Series: Earth and Environmental Science, 686, 012040.

Agarwal, M., Agarwal, M. K., Shrivastav, N., Pandey, S., Das, R., & Gaur, P. 2018. Preparation of chitosan nanoparticles and their in-vitro characterization. International Journal of Life-Sciences Scientific Research, 4(2), 1713-1720

Agusmansyah, S., 2021. An overview of Syzigium polyanthum (bay leaf) extract as dyslipidemia treatment. Open Access Indonesian Journal of Medical Reviews, 1(5), pp.90-92.

Antoniou, A., Li, F., Majeed, H., Qi, J., Yokoyama, W., Zhong, F., 2014. Physicochemical and morphological properties of size-controlled chitosan-tripolyphosphate nanoparticles. Colloids and surface A : physicochemical and engineering aspects, 465, pp.137-146.

Armendáriz-Barragán, B., Zafar, N., Badri, W., Galindo-Rodríguez, S. A., Kabbaj, D., Fessi, H., & Elaissari, A., 2016. Plant extracts: from encapsulation to application. Expert Opinion on Drug Delivery, 13(8), pp. 1165–1175.

Chen, T. H., Liu, J. C., Chang, J. J., Tsai, M. F., Hsieh, M. H., Chan, P., 2001. The in vitro inhibitory effect of flavonoid astilbin on 3-hydroxy-3-methylglutaryl coenzyme A reductase on Vero cells. Zhonghua Yi Xue Za Zhi (Taipei), 64(7), pp. 382-387.

Cordell, G.A., 1981. Introduction to Alkaloid a biogenetic Approach (pp. X-X). New York: John Willey and Sons.

Damanik, M. I. S., Lindarto, D., Syafril, S., 2019. Comparison of the effect bay leaves (Syzygium polyantum (wight) walp) with a dosage of 400 mg and 600 mg to HS-CRP in patients with dyslipidemia. Int Jour of Res Sci & Management, 6(8), pp. 21-26.

Das, A., Mukherjee, A., & Dhar, P., 2013. Characterization of antioxidants and antioxidative properties of various unifloral honeys procured from West Bengal, India. IOSR-JESTFT, 7(3), pp. 56-63.

Departemen Kesehatan Republik Indonesia., 1995. Materia Medika Indonesia Jilid VI. Jakarta : Departemen Kesehatan Republik Indonesia.

Farnsworth, N. R., 1966. Biological and Phytochemical Screening of Plants. Journal of Pharmaceutical Science, 55(3), pp. 225-276.

Geissman, T. A., 1962. The Chemistry of Flavonoid Counpound. Oxford : Pergamon Press.

Ghadiri, M., Fatemi, S., Vatanara, A., Doroud, D., Najafabadi, A. R., Darabi, M., & Rahimi, A. A., 2012. Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment efficiency and particle size. International journal of pharmaceutics, 424(1-2), 128-137.Golomb, B.A., Evans, M. A., 2012. Statin adverse effects. American J of Cardio Drug, 8, pp. 373-418.

Gotto, A. M., 2022. Management of dyslipidemia. The American J of Med, 8(1), pp.10-18.

Harborne, J., 1996. Metode Fitokimia : Penuntun Cara Modern Menganalisis Tumbuhan Cetakan Kedua. Penerjemah : Padmawinata, K. dan Iwang, S. Bandung : Penerbit ITB.

Hidayati, E.N., 2021. Studi Inhibisi Spermatogenesis Nanopartikel Phyllanthus niruri melalui Jalur Persinyalan Testosteron Non Klasik secara In Vitro pada Lini Sel TM4 (Thesis, Institute of Technology Bandung)

Kamso, S., Purwantyastuti., Juwita, R., 2022. Dislipidemia pada lanjut usia di kota Padang. Makara Kesehatan, 6(2), pp.55-58.

Kumar, A., & Dixit, C. K., 2017. Methods for characterization of nanoparticles. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, pp. 43–58.

Kusuma, I. W., Kuspradini, H., Arung, E. T., Aryani, F., Min, Y. H., Kim, J. S., & Kim, Y. U., 2011. Biological activity and phytochemical analysis of three Indonesian medicinal plants, Murraya koenigii, Syzygium polyanthum and Zingiber purpurea. Journal of Acupuncture and Meridian Studies, 4(1), pp. 75-79.

Mahmood, M. A., Madni, A., Rehman, M., Rahim, M. A., Jabar, A., 2019. Ionically cross-linked chitosan nanoparticles for sustained delivery of docetaxel: fabrication,post-formulation and acute oraltoxicity evaluation. International journal of nanomedicine, 14, pp. 10035-10046.

Mattu, C., Li, R., & Ciardelli, G., 2013. Chitosan nanoparticles as therapeutic protein nanocarriers: the effect of ph on particle formation and encapsulation efficiency. Polymer composites, 34(9), pp. 1538-1545.

Nasyanka, A. L., Na'imah, J., Aulia, R., 2020. Pengantar Fitokimia. Pasuruan: Penerbit Qiara Media.

Prianwari, C., Lindarto, D., Syafril, S., 2019. Comparison of the effect bay leaves (Syzygium polyantum (wight) walp) with a dosage of 400 mg and 600 mg on lipropotein (a) in patients with dyslipidemia. Int Jour of Res Sci & Management, 6(9), pp. 21-27.

Qi, L., Xu, Z., Jiang, X., Hu, C., Zou, X., 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 339, pp. 2693-700.

Shrimal, P., Jadeja, G., Patel, S., 2020. A review on novel methodologies for drug nanoparticle preparation : midrofluidic approach. Chem eng research and design, 153, pp.728-756.

Singh, R., Jr Liliard, J. W., 2009. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology, 86, pp. 215-23.

Smith, A. J., Kavuru, P., Wojtas, L., Zaworotko, M. J., & Shytle, R. D., 2011. Cocrystals of Quercetin with Improved Solubility and Oral Bioavailability. Molecular Pharmaceutics, 8(5), pp. 1867–1876.

Suman, T. S., Gupta, R., 2013. Development of herbal biodegradable polymeric nanoparticle from Clerodendrum infortunatum L. J Bionanoscience,7, pp.341–347.

Umair, M., Javed, I., Rehman, M., Madni, A., Javeed, A., Ghafoor, A., & Ashraf, M., 2016. Nanotoxicity of inert materials: the case of gold, silver and iron. Journal of Pharmacy & Pharmaceutical Sciences, 19(2), pp. 161-180.

Vrignaud, S., Anton, N., Gayet, P., Benoit, J. P., & Saulnier, P., 2011. Reverse micelle-loaded lipid nanocarriers: a novel drug delivery system for the sustained release of doxorubicin hydrochloride. European journal of pharmaceutics and biopharmaceutics, 79(1), pp. 197-204.

Widjajakusuma, E. C., Jonosewojo, A., Hendriati, L., Wijaya, S., Surjadhana, A., Sastrowardoyo, W., ... & Heriyanti, C., 2018. Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. f.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine, 55, pp.137-147.

Widyaningsih, T. D., Akbar, S. M., Wijayanti, N., 2021. Optimization of maltodextrin concentration, drying temperature and drying time on total flavonoid content and antioxidant activity of black garlic (Allium sativum L.) aqueous extract powder using response surface methodology. Series: Earth and Environmental Science, 924, 012035.

Wu,J., Wang, Y.,Yang, H., Liu, X., Lu, Z., 2017. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydrate polymers, 175, pp. 170-77.

Yang, W., Fu, J., Wang, T., He, N., 2009. Chitosan/sodium tripolyphosphate nanoparticles: preparation, characterization and application as drug carrier. J of bio nano, 5, pp. 591-595.

Yien, L., Zin, N. M., Sarwar, A., & Katas, H., 2012. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International journal of Biomaterials, pp. 1-9.

Article Metrics

Abstract view(s): 122 time(s)
PDF: 111 time(s)

Refbacks

  • There are currently no refbacks.