The Profile of Students’ Thinking in Solving Mathematics Problems Based on Adversity Quotient

Christina Kartika Sari(1*), Sutopo Sutopo(2), Dyah Ratri Aryuna(3)

(1) Department of Mathematics Education, Universitas Muhammadiyah Surakarta
(2) Department of Mathematics Education, Universitas Sebelas Maret Surakarta
(3) Department of Mathematics Education, Universitas Sebelas Maret Surakarta
(*) Corresponding Author

Abstract

The purpose of this research was to know the thinking processes of climber, camper, and quitter high school students in solving mathematical problems. This research used a qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews. Based on the results of data analysis it can be concluded that: (1) the profiles of climber’s thinking processes are: (a) assimilation and abstraction  in understanding problems, (b) assimilation, accommodation, and abstraction in planning problem solving (c) assimilation, accommodation, and abstraction in implementing the plan of problem solving, and  (d) accommodation in checking the solution; (2) the profiles of camper’s thinking processes are: (a) assimilation in understanding mathematical problems, (b) assimilation, accommodation, and abstraction in planning problem solving, (c) abstraction in implementing the plan of problem solving, and (d) assimilation in checking the solution; (3) the profiles of quitter’s thinking processes are: (a) assimilation and abstraction in understanding problems, (b) assimilation, accommodation, and abstraction in planning problem solving, (c) assimilation, accommodation, and abstraction in implementing the plan of problem solving, and (d) assimilation in checking the solution.

Keywords

assimilation, accommodation, abstraction, adversity quotient, problem solving

Full Text:

PDF

References

Dawkins, P. (2006). How to Study Mathematics. http://tutorial.math,lamar.edu/pdf/How_To_Study_Math.pdf. Accessed on 8 March 2011.

Depdiknas. (2006). Standar Isi untuk Satuan Pendidikan Dasar dan Menengah. Jakarta: Badan Standar Nasional Pendidikan.

Gray, E dan Tall, D. (2007).Abstraction as a Natural Process of Mental Compression. Mathematics Education Research Journal,19(2).

Marpaung, Y. (1986). Proses Berpikir Siswa dalam Pembentukan Konsep Algoritma Matematis.Makalah Pidato Dies Natalis XXXI IKIP Sanata Dharma Yogyakarta. Dated 25 October 1986.

Polya, G. (1973). How To Solve It. New Jersey: Princeton University Press.

Saad, M. N. S. (2010). Di Malaysia, Matematika Juga Jadi Momok bagi Siswa.Makalah Seminar Matematika dan Penerapannya di UMM Dome 30 Januari 2010. Accessed from: http://www.umm.ac.id.

Shadiq, F. (2009). Kemahiran Matematika. Departemen Pendidikan Nasional.

Stoltz, Paul G. (2000). Adversity Quotient: Mengubah Hambatan menjadi Peluang. Jakarta: Grasindo.

Sudarman. (2007). Penerapan Adversity Quotient dalam Pembelajaran Matematika. Jurnal Pelopor Pendidikan Volume 1, Suplemen, Agustus 2007. Diterbitkan: Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) PGRI Sumenep.

Sudarman. (2010). Proses Berpikir Siswa SMP Berdasarkan Adversity Quotient (AQ) dalam Menyelesaikan Masalah Matematika. Disertasi. Surabaya: Universitas Negeri Surabaya.

Suparno, P. (2001). Teori Perkembangan Kognitif Jean Piaget. Yogyakarta: Kanisius.

Suradi. (2007). Profil Gaya Berpikir Siswa SMP dalam Belajar Matematika. Jurnal Pendidikan dan kebudayaan No 067 Tahun Ke-13 Juli 2007.

Widyastuti, R. (2013). Proses Berpikir Siswa SMP dalam Menyelesaikan Masalah Matematika Berdasarkan Langkah-langkah Polya Ditinjau dari Adversity Quotient. Thesis. Surakarta: Universitas Sebelas Maret.

Article Metrics

Abstract view(s): 1559 time(s)
PDF: 1143 time(s)

Refbacks

  • There are currently no refbacks.